249,189 research outputs found

    On the convergence of a higher order family of methods and its dynamics

    Full text link
    [EN] In this paper, we present the study of the local convergence of a higher-order family of methods. Moreover, the dynamical behavior of this family of iterative methods applied to quadratic polynomials is studied. Some anomalies are found in this family by means of studying the associated rational function. Parameter spaces are shown and the study of the stability of all the fixed points is presented. (C) 2016 Elsevier B.V. All rights reserved.This research was supported by Universidad Internacional de La Rioja (UNIR, http://www.unir.net), under the Plan Propio de Investigación, Desarrollo e Innovación 3 [2015–2017]. Research group: Modelación matemática aplicada a la ingeniería(MOMAIN), by the grant SENECA 19374/PI/14 and by Ministerio de Ciencia y Tecnología MTM2014-52016-C2-{01,02}-P.Argyros, IK.; Cordero Barbero, A.; Alberto Magreñán, A.; Torregrosa Sánchez, JR. (2017). On the convergence of a higher order family of methods and its dynamics. Journal of Computational and Applied Mathematics. 309:542-562. https://doi.org/10.1016/j.cam.2016.04.022S54256230

    Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters

    Full text link
    [EN] In this paper, we propose a family of optimal eighth order convergent iterative methods for multiple roots with known multiplicity with the introduction of two free parameters and three univariate weight functions. Also numerical experiments have applied to a number of academical test functions and chemical problems for different special schemes from this family that satisfies the conditions given in convergence result.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and Generalitat Valenciana PROMETEO/2016/089.Zafar, F.; Cordero Barbero, A.; Quratulain, R.; Torregrosa Sánchez, JR. (2018). Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. Journal of Mathematical Chemistry. 56(7):1884-1901. https://doi.org/10.1007/s10910-017-0813-1S18841901567R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015)R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, V. Kanwar, An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 71(4), 775–796 (2016)R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algor. (2017). doi: 10.1007/s11075-017-0361-6F.I. Chicharro, A. Cordero, J. R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. ID 780153 (2013)A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications (Prentice Hall PTR, New Jersey, 1999)J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, 1972)Y.H. Geum, Y.I. Kim, B. Neta, A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400 (2015)Y.H. Geum, Y.I. Kim, B. Neta, A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016)J.L. Hueso, E. Martınez, C. Teruel, Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015)L.O. Jay, A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)S. Li, X. Liao, L. Cheng, A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)S.G. Li, L.Z. Cheng, B. Neta, Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)B. Liu, X. Zhou, A new family of fourth-order methods for multiple roots of nonlinear equations. Nonlinear Anal. Model. Control 18(2), 143–152 (2013)M. Shacham, Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986)M. Sharifi, D.K.R. Babajee, F. Soleymani, Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)J.R. Sharma, R. Sharma, Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)F. Soleymani, D.K.R. Babajee, T. Lofti, On a numerical technique forfinding multiple zeros and its dynamic. J. Egypt. Math. Soc. 21, 346–353 (2013)F. Soleymani, D.K.R. Babajee, Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013)R. Thukral, A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. J. Numer. Math. Stoch. 6(1), 37–44 (2014)R. Thukral, Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations. J. Math. Article ID 404635 (2013)X. Zhou, X. Chen, Y. Song, Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011)X. Zhou, X. Chen, Y. Song, Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013

    A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots

    Full text link
    [EN] The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev¿Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for ¿ = 2,which corresponds to an optimal method in the sense of Kung and Traub¿s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under Grant MTM2014-52016-C2-1-2-P and by the project of Generalitat Valenciana Prometeo/2016/089Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alarcon-Correa, D. (2019). A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots. Mathematics. 7(4):1-12. https://doi.org/10.3390/math7040339S11274Gutiérrez, J. M., & Hernández, M. A. (1997). A family of Chebyshev-Halley type methods in Banach spaces. Bulletin of the Australian Mathematical Society, 55(1), 113-130. doi:10.1017/s0004972700030586Kanwar, V., Singh, S., & Bakshi, S. (2008). Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations. Numerical Algorithms, 47(1), 95-107. doi:10.1007/s11075-007-9149-4Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Xiaojian, Z. (2008). Modified Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 203(2), 824-827. doi:10.1016/j.amc.2008.05.092Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Kou, J., & Li, Y. (2007). Modified Chebyshev–Halley methods with sixth-order convergence. Applied Mathematics and Computation, 188(1), 681-685. doi:10.1016/j.amc.2006.10.018Li, D., Liu, P., & Kou, J. (2014). An improvement of Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 235, 221-225. doi:10.1016/j.amc.2014.02.083Sharma, J. R. (2015). Improved Chebyshev–Halley methods with sixth and eighth order convergence. Applied Mathematics and Computation, 256, 119-124. doi:10.1016/j.amc.2015.01.002Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Behl, R., Alshomrani, A. S., & Motsa, S. S. (2018). An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. Journal of Mathematical Chemistry, 56(7), 2069-2084. doi:10.1007/s10910-018-0857-xMcNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces

    Full text link
    [EN] Semilocal convergence for an iteration of order five for solving nonlinear equations in Banach spaces is established under second-order Fr,chet derivative satisfying the Lipschitz condition. It is done by deriving a number of recurrence relations. A theorem for the existence-uniqueness along with the estimation of error bounds of the solution is established. Its R-order is shown to be equal to five. Both efficiency and computational efficiency indices are given. A variety of examples are worked out to show its applicability. In comparison to existing methods having similar R-orders, improved results in terms of computational efficiency index and error bounds are found using our methodology.The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India.Singh, S.; Gupta, D.; Martínez Molada, E.; Hueso Pagoaga, JL. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics. 13(6):4219-4235. doi:10.1007/s00009-016-0741-5S42194235136Cordero A., Hueso J.L., Martinez E., Torregrosa J.R.: Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369–2374 (2012)Chen, L., Gu, C., Ma Y.: Semilocal convergence for a fifth order Newton’s method using Recurrence relations in Banach spaces. J. Appl. Math. 2011, 1–15 (2011)Wang X., Kou J., Gu C.: Semilocal convergence of a sixth order Jarrat method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)Zheng L., Gu C.: Semilocal convergence of a sixth order method in Banach spaces. Numer. Algorithms 61, 413–427 (2012)Zheng L., Gu C.: Recurrence relations for semilocal convergence of a fifth order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)Proinov P.D., Ivanov S.I.: On the convergence of Halley’s method for multiple polynomial zeros. Mediterr. J. Math. 12, 555–572 (2015)Ezquerro, J.A., Hernández-Verón M.A.: On the domain of starting points of Newton’s method under center lipschitz conditions. Mediterr. J. Math. (2015). doi: 10.1007/s00009-015-0596-1Cordero A., Hernández-Verón M.A., Romero N., Torregrosa J.R.: Semilocal convergence by using recurrence relations for a fifth-order method in Banach spaces. J. Comput. Appl. Math. 273, 205–213 (2015)Parida P.K., Gupta D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206, 873–887 (2007)Hueso J.L., Martínez E.: Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)Argyros, I.K., Hilout S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp., New Jersey (2013)Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)Argyros I.K., Khattri S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2004)Argyros I.K., Hilout A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)Kantorovich, L.V., Akilov G.P.: Functional analysis. Pergamon Press, Oxford (1982)Argyros I.K., George S., Magreñán A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)Argyros I.K., Magreñán A.A.: A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2015)Amat S., Hernández M.A., Romero N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)Chun, C., St a˘{\breve{a}} a ˘ nic a˘{\breve{a}} a ˘ , P., Neta, B.: Third-order family of methods in Banach spaces. Comput. Math. Appl. 61, 1665–1675 (2011)Ostrowski, A.M.: Solution of equations in Euclidean and Banach spaces, 3rd edn. Academic Press, New-York (1977)Jaiswal J.P.: Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numer. Algorithms 71, 933–951 (2015)Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964

    Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence

    Full text link
    [EN] The main contribution of this study is to present a new optimal eighth-order scheme for locating zeros with multiplicity m > 1. An extensive convergence analysis is presented with the main theorem in order to demonstrate the optimal eighth-order convergence of the proposed scheme. Moreover, a local convergence study for the optimal fourth-order method defined by the first two steps of the new method is presented, allowing us to obtain the radius of the local convergence ball. Finally, numerical tests on some real-life problems, such as a Van der Waals equation of state, a conversion Chemical engineering problem and two standard academic test problems are presented, which confirm the theoretical results established in this paper and the efficiency of this proposed iterative method. We observed from the numerical experiments that our proposed iterative methods have good values for convergence radii. Further, they have not only faster convergence towards the desired zero of the involved function but they also have both smaller residual error and a smaller difference between two consecutive iterations than current existing techniques.This research was partially supported by Ministerio de Economia y Competitividad under grant MTM2014-52016-C2-2-P and by the project of Generalitat Valenciana Prometeo/2016/089.Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alshomrani, AS. (2019). Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence. Mathematical Problems in Engineering. 2019:1-18. https://doi.org/10.1155/2019/1427809S1182019Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2013). Basic concepts. Multipoint Methods, 1-26. doi:10.1016/b978-0-12-397013-8.00001-7Shengguo, L., Xiangke, L., & Lizhi, C. (2009). A new fourth-order iterative method for finding multiple roots of nonlinear equations. Applied Mathematics and Computation, 215(3), 1288-1292. doi:10.1016/j.amc.2009.06.065Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Li, S. G., Cheng, L. Z., & Neta, B. (2010). Some fourth-order nonlinear solvers with closed formulae for multiple roots. Computers & Mathematics with Applications, 59(1), 126-135. doi:10.1016/j.camwa.2009.08.066Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Sharifi, M., Babajee, D. K. R., & Soleymani, F. (2012). Finding the solution of nonlinear equations by a class of optimal methods. Computers & Mathematics with Applications, 63(4), 764-774. doi:10.1016/j.camwa.2011.11.040Soleymani, F., & Babajee, D. K. R. (2013). Computing multiple zeros using a class of quartically convergent methods. Alexandria Engineering Journal, 52(3), 531-541. doi:10.1016/j.aej.2013.05.001Soleymani, F., Babajee, D. K. R., & Lotfi, T. (2013). On a numerical technique for finding multiple zeros and its dynamic. Journal of the Egyptian Mathematical Society, 21(3), 346-353. doi:10.1016/j.joems.2013.03.011Zhou, X., Chen, X., & Song, Y. (2013). Families of third and fourth order methods for multiple roots of nonlinear equations. Applied Mathematics and Computation, 219(11), 6030-6038. doi:10.1016/j.amc.2012.12.041Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Zafar, F., Cordero, A., Quratulain, R., & Torregrosa, J. R. (2017). Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. Journal of Mathematical Chemistry, 56(7), 1884-1901. doi:10.1007/s10910-017-0813-1Geum, Y. H., Kim, Y. I., & Neta, B. (2018). Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. Journal of Computational and Applied Mathematics, 333, 131-156. doi:10.1016/j.cam.2017.10.033Geum, Y. H., Kim, Y. I., & Magreñán, Á. A. (2018). A study of dynamics via Möbius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions. Journal of Computational and Applied Mathematics, 344, 608-623. doi:10.1016/j.cam.2018.06.006Chun, C., & Neta, B. (2015). An analysis of a family of Maheshwari-based optimal eighth order methods. Applied Mathematics and Computation, 253, 294-307. doi:10.1016/j.amc.2014.12.064Thukral, R. (2013). Introduction to Higher-Order Iterative Methods for Finding Multiple Roots of Nonlinear Equations. Journal of Mathematics, 2013, 1-3. doi:10.1155/2013/404635Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160Zhou, X., Chen, X., & Song, Y. (2013). On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition. Numerical Algorithms, 65(2), 221-232. doi:10.1007/s11075-013-9702-2Bi, W., Ren, H., & Wu, Q. (2011). Convergence of the modified Halley’s method for multiple zeros under Hölder continuous derivative. Numerical Algorithms, 58(4), 497-512. doi:10.1007/s11075-011-9466-5Zhou, X., & Song, Y. (2014). Convergence radius of Osada’s method under center-Hölder continuous condition. Applied Mathematics and Computation, 243, 809-816. doi:10.1016/j.amc.2014.06.068Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Balaji, G. V., & Seader, J. D. (1995). Application of interval Newton’s method to chemical engineering problems. Reliable Computing, 1(3), 215-223. doi:10.1007/bf02385253Shacham, M. (1989). An improved memory method for the solution of a nonlinear equation. Chemical Engineering Science, 44(7), 1495-1501. doi:10.1016/0009-2509(89)80026-

    Determination of multiple roots of nonlinear equations and applications

    Full text link
    The final publication is available at Springer via https://dx.doi.org/10.1007/s10910-014-0460-8[EN] In this work we focus on the problem of approximating multiple roots of nonlinear equations. Multiple roots appear in some applications such as the compression of band-limited signals and the multipactor effect in electronic devices. We present a new family of iterative methods for multiple roots whose multiplicity is known. The methods are optimal in Kung-Traub's sense (Kung and Traub in J Assoc Comput Mach 21:643-651, [1]), because only three functional values per iteration are computed. By adding just one more function evaluation we make this family derivative free while preserving the convergence order. To check the theoretical results, we codify the new algorithms and apply them to different numerical examples.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID-SP-2012-0474.Hueso Pagoaga, JL.; Martínez Molada, E.; Teruel Ferragud, C. (2015). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry. 53(3):880-892. https://doi.org/10.1007/s10910-014-0460-8S880892533H.T. Kung, J.F. Traub, Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)W. Bi, H. Ren, Q. Wu, Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009)W. Bi, Q. Wu, H. Ren, A new family of eighth-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 214, 236–245 (2009)A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010)E. Schröder, Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870)C. Chun, B. Neta, A third-order modification of Newtons method for multiple roots. Appl. Math. Comput. 211, 474–479 (2009)Y.I. Kim, S.D. Lee, A third-order variant of NewtonSecant method finding a multiple zero. J. Chungcheong Math. Soc. 23(4), 845–852 (2010)B. Neta, Extension of Murakamis high-order nonlinear solver to multiple roots. Int. J. Comput. Math. 8, 1023–1031 (2010)H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput. 209, 206–210 (2009)Q. Zheng, J. Wang, P. Zhao, L. Zhang, A Steffensen-like method and its higher-order variants. Appl. Math. Comput. 214, 10–16 (2009)S. Amat, S. Busquier, On a Steffensen’s type method and its behavior for semismooth equations. Appl. Math. Comput. 177, 819–823 (2006)X. Feng, Y. He, High order iterative methods without derivatives for solving nonlinear equations. Appl. Math. Comput. 186, 1617–1623 (2007)A. Cordero, J.R. Torregrosa, A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. doi: 10.1016/j.amc.2011.02.067F. Marvasti, A. Jain, Zero crossings, bandwidth compression, and restoration of nonlinearly distorted band-limited signals. J. Opt. Soc. Am. A 3, 651–654 (1986)S. Anza, C. Vicente, B. Gimeno, V.E. Boria, J. Armendáriz, Long-term multipactor discharge in multicarrier systems. Physics of Plasmas 14(8), 082–112 (2007)J.L. Hueso, E. Martínez, C. Teruel, New families of iterative methods with fourth and sixth order of convergence and their dynamics, in Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, 24–27 June 2013A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. doi: 10.10016/j.cam.2014.01.024 (2014)J.R. Sharma, R. Sharma, Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010

    Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems

    Full text link
    [EN] In this paper, we analyze the semilocal convergence of k-steps Newton's method with frozen first derivative in Banach spaces. The method reaches order of convergence k + 1. By imposing only the assumption that the Fr,chet derivative satisfies the Lipschitz continuity, we define appropriate recurrence relations for obtaining the domains of convergence and uniqueness. We also define the accessibility regions for this iterative process in order to guarantee the semilocal convergence and perform a complete study of their efficiency. Our final aim is to apply these theoretical results to solve a special kind of conservative systems.Hernández-Verón, MA.; Martínez Molada, E.; Teruel-Ferragud, C. (2017). Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numerical Algorithms. 76(2):309-331. https://doi.org/10.1007/s11075-016-0255-zS309331762Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Comput. 25, 2209–2217 (2012)Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical Modelling with Applications in Biosciences and Engineering. Nova Publishers, New York (2011)Argyros, I.K., George, S.: A unified local convergence for Jarratt-type methods in Banach space under weak conditions. Thai. J. Math. 13, 165–176 (2015)Argyros, I.K., Hilout, S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)Argyros, I.K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev–Secant-type methods. J. Comput. Appl. Math. 235, 3195–2206 (2011)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Math. Comput. Mod. 57, 1950–1956 (2013)Ezquerro, J.A., Grau-Sánchez, M., Hernández, M. A., Noguera, M.: Semilocal convergence of secant-like methods for differentiable and nondifferentiable operators equations. J. Math. Anal. Appl. 398(1), 100–112 (2013)Honorato, G., Plaza, S., Romero, N.: Dynamics of a higher-order family of iterative methods. J. Complexity 27(2), 221–229 (2011)Jerome, J.W., Varga, R.S.: Generalizations of Spline Functions and Applications to Nonlinear Boundary Value and Eigenvalue Problems, Theory and Applications of Spline Functions. Academic Press, New York (1969)Kantorovich, L.V., Akilov, G.P.: Functional analysis Pergamon Press. Oxford (1982)Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Dover Publications, New York (1992)Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. Academic Press, New York (1979)Ortega, J.M.: The Newton-Kantorovich theorem. Amer. Math. Monthly 75, 658–660 (1968)Ostrowski, A.M.: Solutions of Equations in Euclidean and Banach Spaces. Academic Press, New York (1973)Plaza, S., Romero, N.: Attracting cycles for the relaxed Newton’s method. J. Comput. Appl. Math. 235(10), 3238–3244 (2011)Porter, D., Stirling, D.: Integral Equations: A Practical Treatment, From Spectral Theory to Applications. Cambridge University Press, Cambridge (1990)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall. Englewood Cliffs, New Jersey (1964)Argyros, I.K., George, S.: Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds using restricted convergence domains. Journal of Nonlinear Functional Analysis 2016 (2016). Article ID 27Xiao, J.Z., Sun, J., Huang, X.: Approximating common fixed points of asymptotically quasi-nonexpansive mappings by a k+1-step iterative scheme with error terms. J. Comput. Appl. Math 233, 2062–2070 (2010)Qin, X., Dehaish, B.A.B., Cho, S.Y.: Viscosity splitting methods for variational inclusion and fixed point problems in Hilbert spaces. J. Nonlinear Sci. Appl. 9, 2789–2797 (2016

    Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations

    Full text link
    [EN] There is a few number of optimal fourth-order iterative methods for obtaining the multiple roots of nonlinear equations. But, in most of the earlier studies, scholars gave the flexibility in their proposed schemes only at the second step (not at the first step) in order to explore new schemes. Unlike what happens in existing methods, the main aim of this manuscript is to construct a new fourth-order optimal scheme which will give the flexibility to the researchers at both steps as well as faster convergence, smaller residual errors and asymptotic error constants. The construction of the proposed scheme is based on the mid-point formula and weight function approach. From the computational point of view, the stability of the resulting class of iterative methods is studied by means of the conjugacy maps and the analysis of strange fixed points. Their basins of attractions and parameter planes are also given to show their dynamical behavior around the multiple roots. Finally, we consider a real-life problem and a concrete variety of standard test functions for numerical experiments and relevant results are extensively treated to confirm the theoretical development.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.Behl, R.; Cordero Barbero, A.; Motsa, SS.; Torregrosa Sánchez, JR. (2018). Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations. Nonlinear Dynamics. 91(1):81-112. https://doi.org/10.1007/s11071-017-3858-6S81112911Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithms 71(4), 775–796 (2016)Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984)Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013(2013), 1–11 (2013)Devaney, R.L.: The Mandelbrot Set, the Farey Tree and the Fibonacci sequence. Am. Math. Mon. 106(4), 289–302 (1999)Dong, C.: A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math. 21, 363–367 (1987)Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015)Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)Petković, M.S., Neta, B., Petković, L.D., Dz̆unić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, New York (2013)Sbibih, D., Serghini, A., Tijini, A., Zidna, A.: A general family of third order method for finding multiple roots. AMC 233, 338–350 (2014)Schröder, E.: Über unendlichviele Algorithm zur Auffosung der Gleichungen. Math. Ann. 2, 317–365 (1870)Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013)Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique forfinding multiple zeros and its dynamic. J. Egypt. Math. Soc. 21, 346–353 (2013)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013)Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011

    A Variational Perspective on Accelerated Methods in Optimization

    Full text link
    Accelerated gradient methods play a central role in optimization, achieving optimal rates in many settings. While many generalizations and extensions of Nesterov's original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this paper, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the \emph{Bregman Lagrangian} which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods correspond to traveling the same curve in spacetime at different speeds. From this perspective, Nesterov's technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms.Comment: 38 pages. Subsumes an earlier working draft arXiv:1509.0361
    corecore