2,904 research outputs found

    From Skew-Cyclic Codes to Asymmetric Quantum Codes

    Full text link
    We introduce an additive but not F4\mathbb{F}_4-linear map SS from F4n\mathbb{F}_4^{n} to F42n\mathbb{F}_4^{2n} and exhibit some of its interesting structural properties. If CC is a linear [n,k,d]4[n,k,d]_4-code, then S(C)S(C) is an additive (2n,22k,2d)4(2n,2^{2k},2d)_4-code. If CC is an additive cyclic code then S(C)S(C) is an additive quasi-cyclic code of index 22. Moreover, if CC is a module θ\theta-cyclic code, a recently introduced type of code which will be explained below, then S(C)S(C) is equivalent to an additive cyclic code if nn is odd and to an additive quasi-cyclic code of index 22 if nn is even. Given any (n,M,d)4(n,M,d)_4-code CC, the code S(C)S(C) is self-orthogonal under the trace Hermitian inner product. Since the mapping SS preserves nestedness, it can be used as a tool in constructing additive asymmetric quantum codes.Comment: 16 pages, 3 tables, submitted to Advances in Mathematics of Communication

    Skew Cyclic codes over \F_q+u\F_q+v\F_q+uv\F_q

    Get PDF
    In this paper, we study skew cyclic codes over the ring R=\F_q+u\F_q+v\F_q+uv\F_q, where u2=u,v2=v,uv=vuu^{2}=u,v^{2}=v,uv=vu, q=pmq=p^{m} and pp is an odd prime. We investigate the structural properties of skew cyclic codes over RR through a decomposition theorem. Furthermore, we give a formula for the number of skew cyclic codes of length nn over $R.
    • …
    corecore