24,160 research outputs found

    Fault-Tolerant, but Paradoxical Path-Finding in Physical and Conceptual Systems

    Full text link
    We report our initial investigations into reliability and path-finding based models and propose future areas of interest. Inspired by broken sidewalks during on-campus construction projects, we develop two models for navigating this "unreliable network." These are based on a concept of "accumulating risk" backward from the destination, and both operate on directed acyclic graphs with a probability of failure associated with each edge. The first serves to introduce and has faults addressed by the second, more conservative model. Next, we show a paradox when these models are used to construct polynomials on conceptual networks, such as design processes and software development life cycles. When the risk of a network increases uniformly, the most reliable path changes from wider and longer to shorter and narrower. If we let professional inexperience--such as with entry level cooks and software developers--represent probability of edge failure, does this change in path imply that the novice should follow instructions with fewer "back-up" plans, yet those with alternative routes should be followed by the expert?Comment: 8 page

    Inpainting of long audio segments with similarity graphs

    Full text link
    We present a novel method for the compensation of long duration data loss in audio signals, in particular music. The concealment of such signal defects is based on a graph that encodes signal structure in terms of time-persistent spectral similarity. A suitable candidate segment for the substitution of the lost content is proposed by an intuitive optimization scheme and smoothly inserted into the gap, i.e. the lost or distorted signal region. Extensive listening tests show that the proposed algorithm provides highly promising results when applied to a variety of real-world music signals

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    Correlation between ultrasonic velocity and magnetic adaptive testing in flake graphite cast iron

    Get PDF
    A recently developed nondestructive method, called Magnetic Adaptive Testing was applied for investigation of flake graphite cast iron samples having various metallic matrices and graphite structures. MAT is typical by its low required magnetization of samples, because it is based on measurement of families of minor magnetic hysteresis loops. The flat samples were magnetized by an attached yoke and sensitive descriptors of their magnetic/structural state were obtained from evaluation of the measured data. Ultrasonic velocity measurements were performed and results of the non-destructive magnetic tests were compared with these data. A very good correlation was found between the magnetic descriptors and ultrasonic velocity.Web of Science667s17717
    corecore