640 research outputs found

    An elementary proposition on the dynamic routing problem in wireless networks of sensors

    Get PDF
    The routing problem (finding an optimal route from one point in a computer network to another) is surrounded by impossibility results. These results are usually expressed as lower and upper bounds on the set of nodes (or the set of links) of a network and represent the complexity of a solution to the routing problem (a routing function). The routing problem dealt with here, in particular, is a dynamic one (it accounts for network dynamics) and concerns wireless networks of sensors. Sensors form wireless links of limited capacity and time-variable quality to route messages amongst themselves. It is desired that sensors self-organize ad hoc in order to successfully carry out a routing task, e.g. provide daily soil erosion reports for a monitored watershed, or provide immediate indications of an imminent volcanic eruption, in spite of network dynamics. Link dynamics are the first barrier to finding an optimal route between a node x and a node y in a sensor network. The uncertainty of the outcome (the best next hop) of a routing function lies partially with the quality fluctuations of wireless links. Take, for example, a static network. It is known that, given the set of nodes and their link weights (or costs), a node can compute optimal routes by running, say, Dijkstra's algorithm. Link dynamics however suggest that costs are not static. Hence, sensors need a metric (a measurable quantity of uncertainty) to monitor for fluctuations, either improvements or degradations of quality or load; when a fluctuation is sufficiently large (say, by Delta), sensors ought to update their costs and seek another route. Therein lies the other fundamental barrier to find an optimal route - complexity. A crude argument would suggest that sensors (and their links) have an upper bound on the number of messages they can transmit, receive and store due to resource constraints. Such messages can be application traffic, in which case it is desirable, or control traffic, in which case it should be kept minimal. The first type of traffic is demand, and a user should provision for it accordingly. The second type of traffic is overhead, and it is necessary if a routing system (or scheme) is to ensure its fidelity to the application requirements (policy). It is possible for a routing scheme to approximate optimal routes (by Delta) by reducing its message and/or memory complexity. The common denominator of the routing problem and the desire to minimize overhead while approximating optimal routes is Delta, the deviation (or stretch) of a computed route from an optimal one, as computed by a node that has instantaneous knowledge of the set of all nodes and their interaction costs (an oracle). This dissertation deals with both problems in unison. To do so, it needs to translate the policy space (the user objectives) into a metric space (routing objectives). It does so by means of a cost function that normalizes metrics into a number of hops. Then it proceeds to devise, design, and implement a scheme that computes minimum-hop-count routes with manageable complexity. The theory presented is founded on (well-ordered) sets with respect to an elementary proposition, that a route from a source x to a destination y can be computed either by y sending an advertisement to the set of all nodes, or by x sending a query to the set of all nodes; henceforth the proactive method (of y) and the reactive method (of x), respectively. The debate between proactive and reactive routing protocols appears in many instances of the routing problem (e.g. routing in mobile networks, routing in delay-tolerant networks, compact routing), and it is focussed on whether nodes should know a priori all routes and then select the best one (with the proactive method), or each node could simply search for a (hopefully best) route on demand (with the reactive method). The proactive method is stateful, as it requires the entire metric space - the set of nodes and their interaction costs - in memory (in a routing table). The routes computed by the proactive method are optimal and the lower and upper bounds of proactive schemes match those of an oracle. Any attempt to reduce the proactive overhead, e.g. by introducing hierarchies, will result in sub-optimal routes (of known stretch). The reactive method is stateless, as it requires no information whatsoever to compute a route. Reactive schemes - at least as they are presently understood - compute sub-optimal routes (and thus far, of unknown stretch). This dissertation attempts to answer the following question: "what is the least amount of state required to compute an optimal route from a source to a destination?" A hybrid routing scheme is used to investigate this question, one that uses the proactive method to compute routes to near destinations and the reactive method for distant destinations. It is shown that there are cases where hybrid schemes can converge to optimal routes, despite possessing incomplete routing state, and that the necessary and sufficient condition to compute optimal routes with local state alone is related neither to the size nor the density of a network; it is rather the circumference (the size of the largest cycle) of a network that matters. Counterexamples, where local state is insufficient, are discussed to derive the worst-case stretch. The theory is augmented with simulation results and a small experimental testbed to motivate the discussion on how policy space (user requirements) can translate into metric spaces and how different metrics affect performance. On the debate between proactive and reactive protocols, it is shown that the two classes are equivalent. The dissertation concludes with a discussion on the applicability of its results and poses some open problems

    Minimum Energy Broadcast in Duty Cycled Wireless Sensor Networks

    Get PDF
    We study the problem of finding a minimum energy broadcast tree in duty cycled wireless sensor networks. In such networks, every node has a wakeup schedule and is awake and ready to receive packets or transmit in certain time slots during the schedule and asleep during the rest of the schedule. We assume that a forwarding node needs to stay awake to forward a packet to the next hop neighbor until the neighbor is awake. The minimum energy broadcast tree minimizes the number of additional time units that nodes have to stay awake in order to accomplish broadcast. We show that finding the minimum energy broadcast tree is NP-hard. We give two algorithms for finding energy-efficient broadcast trees in such networks. We performed extensive simulations to study the performance of these algorithms and compare them with previously proposed algorithms. Our results show that our algorithms exhibit the best performance in terms of average number of additional time units a node needs to be awake, as well as in terms of the smallest number of highly loaded nodes, while being competitive with previous algorithms in terms of the total number of transmissions and delay

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Real-Time Cross-Layer Routing Protocol for Ad Hoc Wireless Sensor Networks

    Get PDF
    Reliable and energy efficient routing is a critical issue in Wireless Sensor Networks (WSNs) deployments. Many approaches have been proposed for WSN routing, but sensor field implementations, compared to computer simulations and fully-controlled testbeds, tend to be lacking in the literature and not fully documented. Typically, WSNs provide the ability to gather information cheaply, accurately and reliably over both small and vast physical regions. Unlike other large data network forms, where the ultimate input/output interface is a human being, WSNs are about collecting data from unattended physical environments. Although WSNs are being studied on a global scale, the major current research is still focusing on simulations experiments. In particular for sensor networks, which have to deal with very stringent resource limitations and that are exposed to severe physical conditions, real experiments with real applications are essential. In addition, the effectiveness of simulation studies is severely limited in terms of the difficulty in modeling the complexities of the radio environment, power consumption on sensor devices, and the interactions between the physical, network and application layers. The routing problem in ad hoc WSNs is nontrivial issue because of sensor node failures due to restricted recourses. Thus, the routing protocols of WSNs encounter two conflicting issue: on the one hand, in order to optimise routes, frequent topology updates are required, while on the other hand, frequent topology updates result in imbalanced energy dissipation and higher message overhead. In the literature, such as in (Rahul et al., 2002), (Woo et al., 2003), (TinyOS, 2004), (Gnawali et al., 2009) and (Burri et al., 2007) several authors have presented routing algorithms for WSNs that consider purely one or two metrics at most in attempting to optimise routes while attempting to keep small message overhead and balanced energy dissipation. Recent studies on energy efficient routing in multihop WSNs have shown a great reliance on radio link quality in the path selection process. If sensor nodes along the routing path and closer to the base station advertise a high quality link to forwarding upstream packets, these sensor nodes will experience a faster depletion rate in their residual energy. This results in a topological routing hole or network partitioning as stated and resolved in and (Daabaj 2010). This chapter presents an empirical study on how to improve energy efficiency for reliable multihop communication by developing a real-time cross-layer lifetime-oriented routing protocol and integrating useful routing information from different layers to examine their joint benefit on the lifetime of individual sensor nodes and the entire sensor network. The proposed approach aims to balance the workload and energy usage among relay nodes to achieve balanced energy dissipation, thereby maximizing the functional network lifetime. The obtained experimental results are presented from prototype real-network experiments based on Crossbow’s sensor motes (Crossbow, 2010), i.e., Mica2 low-power wireless sensor platforms (Crossbow, 2010). The distributed real-time routing protocol which is proposed In this chapter aims to face the dynamics of the real world sensor networks and also to discover multiple paths between the base station and source sensor nodes. The proposed routing protocol is compared experimentally with a reliability-oriented collection-tree protocol, i.e., the TinyOS MintRoute protocol (Woo et al., 2003). The experimental results show that our proposed protocol has a higher node energy efficiency, lower control overhead, and fair average delay

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Effect of steel fibre volume fraction on thermal performance of lightweight foamed mortar (LFM) at ambient temperature

    Get PDF
    Lightweight foamed mortar (LFM) has grow into utmost commercial building material in the construction industry for non-structural and semi-structural applications owing to its reduced self-weight, flowability, stability and excellent thermal insulation properties. Hence, this study was conducted with the aims to develop an alternative for conventional concrete bricks and blocks for non-structural and semi-structural applications of masonry. Lightweight foamed mortar (LFM) is either a cement paste or mortar, relegated as lightweight concrete, in which suitable foaming agent entraps the air-voids in mortar. It therefore has a wide range of applications such as material for wall blocks or panels, floor & roof screeds, trench reinstatement, road foundations and voids filling. This research focuses on experimental investigation of thermal properties of LFM with inclusion of relatively low volume fraction (0.2% and 0.4%) of steel fibre at ambient temperature. There are three parameters will be scrutinized such as thermal conductivity, thermal diffusivity as well as the specific heat capacity. There are two densities of 600kg/m3 and 1200kg/m3 had been cast and tested. The mix design proportion of LFM used for cement, aggregate and water ratio was 1: 1.5:0.45. The experimental results had indicated that the thermal conductivity, thermal diffusivity and specific heat value slightly higher than control mix due to the addition of steel fibres. For instance, thermal conductivity, diffusivity and specific heat of 600 kg/m3 density control mix were 0.212W/mK, 0.477mm2/s and 545 J/kgâ—¦C respectively. When 0.2% volume fraction of steel fiber was added in the mix of 600 kg/m3 density, the value of thermal conductivity, diffusivity and specific heat were increased to 0.235W/mK, 0.583mm2/s and 578 J/kgâ—¦C correspondingly. This is due to the characteristic of the steel fibre application in which steel fibre is good as heat conductor and excellent in absorbing heat. Therefore there is a potential of utilizing steel fiber in cement based material like LFM for components that needs excellent heat absorption capacity

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field
    • …
    corecore