7,614 research outputs found

    Transform-based Distributed Data Gathering

    Full text link
    A general class of unidirectional transforms is presented that can be computed in a distributed manner along an arbitrary routing tree. Additionally, we provide a set of conditions under which these transforms are invertible. These transforms can be computed as data is routed towards the collection (or sink) node in the tree and exploit data correlation between nodes in the tree. Moreover, when used in wireless sensor networks, these transforms can also leverage data received at nodes via broadcast wireless communications. Various constructions of unidirectional transforms are also provided for use in data gathering in wireless sensor networks. New wavelet transforms are also proposed which provide significant improvements over existing unidirectional transforms

    Energy Efficient Ant Colony Algorithms for Data Aggregation in Wireless Sensor Networks

    Get PDF
    In this paper, a family of ant colony algorithms called DAACA for data aggregation has been presented which contains three phases: the initialization, packet transmission and operations on pheromones. After initialization, each node estimates the remaining energy and the amount of pheromones to compute the probabilities used for dynamically selecting the next hop. After certain rounds of transmissions, the pheromones adjustment is performed periodically, which combines the advantages of both global and local pheromones adjustment for evaporating or depositing pheromones. Four different pheromones adjustment strategies are designed to achieve the global optimal network lifetime, namely Basic-DAACA, ES-DAACA, MM-DAACA and ACS-DAACA. Compared with some other data aggregation algorithms, DAACA shows higher superiority on average degree of nodes, energy efficiency, prolonging the network lifetime, computation complexity and success ratio of one hop transmission. At last we analyze the characteristic of DAACA in the aspects of robustness, fault tolerance and scalability.Comment: To appear in Journal of Computer and System Science

    Network correlated data gathering with explicit communication: NP-completeness and algorithms

    Get PDF
    We consider the problem of correlated data gathering by a network with a sink node and a tree-based communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. For source coding of correlated data, we consider a joint entropy-based coding model with explicit communication where coding is simple and the transmission structure optimization is difficult. We first formulate the optimization problem definition in the general case and then we study further a network setting where the entropy conditioning at nodes does not depend on the amount of side information, but only on its availability. We prove that even in this simple case, the optimization problem is NP-hard. We propose some efficient, scalable, and distributed heuristic approximation algorithms for solving this problem and show by numerical simulations that the total transmission cost can be significantly improved over direct transmission or the shortest path tree. We also present an approximation algorithm that provides a tree transmission structure with total cost within a constant factor from the optimal

    Joint Routing and STDMA-based Scheduling to Minimize Delays in Grid Wireless Sensor Networks

    Get PDF
    In this report, we study the issue of delay optimization and energy efficiency in grid wireless sensor networks (WSNs). We focus on STDMA (Spatial Reuse TDMA)) scheduling, where a predefined cycle is repeated, and where each node has fixed transmission opportunities during specific slots (defined by colors). We assume a STDMA algorithm that takes advantage of the regularity of grid topology to also provide a spatially periodic coloring ("tiling" of the same color pattern). In this setting, the key challenges are: 1) minimizing the average routing delay by ordering the slots in the cycle 2) being energy efficient. Our work follows two directions: first, the baseline performance is evaluated when nothing specific is done and the colors are randomly ordered in the STDMA cycle. Then, we propose a solution, ORCHID that deliberately constructs an efficient STDMA schedule. It proceeds in two steps. In the first step, ORCHID starts form a colored grid and builds a hierarchical routing based on these colors. In the second step, ORCHID builds a color ordering, by considering jointly both routing and scheduling so as to ensure that any node will reach a sink in a single STDMA cycle. We study the performance of these solutions by means of simulations and modeling. Results show the excellent performance of ORCHID in terms of delays and energy compared to a shortest path routing that uses the delay as a heuristic. We also present the adaptation of ORCHID to general networks under the SINR interference model

    Compressive Data Gathering in Wireless Sensor Networks

    Get PDF
    The thesis focuses on collecting data from wireless sensors which are deployed randomly in a region. These sensors are widely used in applications ranging from tracking to the monitoring of environment, traffic and health among others. These energy constrained sensors, once deployed may receive little or no maintenance. Hence gathering data in the most energy efficient manner becomes critical for the longevity of wireless sensor networks (WSNs). Recently, Compressive data gathering (CDG) has emerged as a useful method for collecting sensory data in WSN; this technique is able to reduce global scale communication cost without introducing intensive computation, and is capable of extending the lifetime of the entire sensor network by balancing the forwarding load across the network. This is particularly true due to the benefits obtained from in-network data compression. With CDG, the central unit, instead of receiving data from all sensors in the network, it may receive very few compressed or weighted sums from sensors, and eventually recovers the original data. To prolong the lifetime of WSN, in this thesis, we present data gathering methods based on CDG. More specifically, we propose data gathering schemes using CDG by building up data aggregation trees from sensor nodes to a central unit (sink). Our problem aims at minimizing the number of links in the forwarding trees to minimize the number of overall transmissions. First, we mathematically formulate the problem and solve it using optimization program. Owing to its complexity, we present real-time algorithmic (centralized and decentralized) methods to efficiently solve the problem. We also explore the benefits one may obtain when jointly applying compressive data gathering with network coding in a wireless sensor network. Finally, and in the context of compressive data gathering, we study the problem of joint forwarding tree construction and scheduling under a realistic interference model, and propose some efficient distributed methods for solving it. We also present a primal dual decomposition method, using the theory of column generation, to solve this complex problem
    corecore