4,984 research outputs found

    Decoding Cyclic Codes up to a New Bound on the Minimum Distance

    Full text link
    A new lower bound on the minimum distance of q-ary cyclic codes is proposed. This bound improves upon the Bose-Chaudhuri-Hocquenghem (BCH) bound and, for some codes, upon the Hartmann-Tzeng (HT) bound. Several Boston bounds are special cases of our bound. For some classes of codes the bound on the minimum distance is refined. Furthermore, a quadratic-time decoding algorithm up to this new bound is developed. The determination of the error locations is based on the Euclidean Algorithm and a modified Chien search. The error evaluation is done by solving a generalization of Forney's formula

    Decoding of Repeated-Root Cyclic Codes up to New Bounds on Their Minimum Distance

    Full text link
    The well-known approach of Bose, Ray-Chaudhuri and Hocquenghem and its generalization by Hartmann and Tzeng are lower bounds on the minimum distance of simple-root cyclic codes. We generalize these two bounds to the case of repeated-root cyclic codes and present a syndrome-based burst error decoding algorithm with guaranteed decoding radius based on an associated folded cyclic code. Furthermore, we present a third technique for bounding the minimum Hamming distance based on the embedding of a given repeated-root cyclic code into a repeated-root cyclic product code. A second quadratic-time probabilistic burst error decoding procedure based on the third bound is outlined. Index Terms Bound on the minimum distance, burst error, efficient decoding, folded code, repeated-root cyclic code, repeated-root cyclic product cod

    Lower bound on the minimum distance of cyclic codes

    Get PDF

    Decoding interleaved Reed-Solomon codes beyond their joint error-correcting capability

    No full text
    International audienceA new probabilistic decoding algorithm for low-rate interleaved Reed-Solomon (IRS) codes is presented. This approach increases the error correcting capability of IRS codes compared to other known approaches (e.g. joint decoding) with high probability. It is a generalization of well-known decoding approaches and its complexity is quadratic with the length of the code. Asymptotic parameters of the new approach are calculated and simulation results are shown to illustrate its performance. Moreover, an upper bound on the failure probability is derived

    On squares of cyclic codes

    Get PDF
    The square C∗2C^{*2} of a linear error correcting code CC is the linear code spanned by the component-wise products of every pair of (non-necessarily distinct) words in CC. Squares of codes have gained attention for several applications mainly in the area of cryptography, and typically in those applications one is concerned about some of the parameters (dimension, minimum distance) of both C∗2C^{*2} and CC. In this paper, motivated mostly by the study of this problem in the case of linear codes defined over the binary field, squares of cyclic codes are considered. General results on the minimum distance of the squares of cyclic codes are obtained and constructions of cyclic codes CC with relatively large dimension of CC and minimum distance of the square C∗2C^{*2} are discussed. In some cases, the constructions lead to codes CC such that both CC and C∗2C^{*2} simultaneously have the largest possible minimum distances for their length and dimensions.Comment: Accepted at IEEE Transactions on Information Theory. IEEE early access version available at https://ieeexplore.ieee.org/document/8451926
    • …
    corecore