1,286 research outputs found

    Advances In Internal Model Principle Control Theory

    Get PDF
    In this thesis, two advanced implementations of the internal model principle (IMP) are presented. The first is the identification of exponentially damped sinusoidal (EDS) signals with unknown parameters which are widely used to model audio signals. This application is developed in discrete time as a signal processing problem. An IMP based adaptive algorithm is developed for estimating two EDS parameters, the damping factor and frequency. The stability and convergence of this adaptive algorithm is analyzed based on a discrete time two time scale averaging theory. Simulation results demonstrate the identification performance of the proposed algorithm and verify its stability. The second advanced implementation of the IMP control theory is the rejection of disturbances consisting of both predictable and unpredictable components. An IMP controller is used for rejecting predictable disturbances. But the phase lag introduced by the IMP controller limits the rejection capability of the wideband disturbance controller, which is used for attenuating unpredictable disturbance, such as white noise. A combination of open and closed-loop control strategy is presented. In the closed-loop mode, both controllers are active. Once the tracking error is insignificant, the input to the IMP controller is disconnected while its output control action is maintained. In the open loop mode, the wideband disturbance controller is made more aggressive for attenuating white noise. Depending on the level of the tracking error, the input to the IMP controller is connected intermittently. Thus the system switches between open and closed-loop modes. A state feedback controller is designed as the wideband disturbance controller in this application. Two types of predictable disturbances are considered, constant and periodic. For a constant disturbance, an integral controller, the simplest IMP controller, is used. For a periodic disturbance with unknown frequencies, adaptive IMP controllers are used to estimate the frequencies before cancelling the disturbances. An extended multiple Lyapunov functions (MLF) theorem is developed for the stability analysis of this intermittent control strategy. Simulation results justify the optimal rejection performance of this switched control by comparing with two other traditional controllers

    Digital signal processing algorithms and structures for adaptive line enhancing

    Get PDF
    Imperial Users onl

    Methods for improving stability and power quality in networks with high levels of power electronics

    Get PDF
    Advanced power electronics are essential to the development of fully active electric power systems. There are, however, potential problems that can arise when high levels of power-electronic systems are distributed throughout a network. Most importantly, power electronics can degrade the quality of the power that is delivered by utility companies; furthermore, they can cause instabilities that lead to complete failures. New "smart" power systems are highly dynamic, meaning that a regulated converter thought to be stable under ideal conditions could easily become unstable for reasons well outside of the designer's control. This thesis addresses the issue of improving power quality in networks with high levels of power electronics. The core concept presented here is an effective on-line approach for the estimation of network impedance, a time-varying quantity that plays a key role in reducing power quality. Real-time information about the network impedance at the Point of Common Coupling (PCC) can produce more stable power converters and pave the way for new measurement techniques that help to monitor power quality. This thesis also examines the application of network impedance measurements for producing model-based adaptive controllers that allow power-electronic systems to remain stable when connected to "non-stiff" networks. This work can be applied in any system that is heavily dependent on power electronics, including terrestrial "Smart Grids," all-electric ships, aircraft, and spacecraft

    Signal processing with Fourier analysis, novel algorithms and applications

    Get PDF
    Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions, also analogously known as sinusoidal modeling. The original idea of Fourier had a profound impact on mathematical analysis, physics and engineering because it diagonalizes time-invariant convolution operators. In the past signal processing was a topic that stayed almost exclusively in electrical engineering, where only the experts could cancel noise, compress and reconstruct signals. Nowadays it is almost ubiquitous, as everyone now deals with modern digital signals. Medical imaging, wireless communications and power systems of the future will experience more data processing conditions and wider range of applications requirements than the systems of today. Such systems will require more powerful, efficient and flexible signal processing algorithms that are well designed to handle such needs. No matter how advanced our hardware technology becomes we will still need intelligent and efficient algorithms to address the growing demands in signal processing. In this thesis, we investigate novel techniques to solve a suite of four fundamental problems in signal processing that have a wide range of applications. The relevant equations, literature of signal processing applications, analysis and final numerical algorithms/methods to solve them using Fourier analysis are discussed for different applications in the electrical engineering/computer science. The first four chapters cover the following topics of central importance in the field of signal processing: • Fast Phasor Estimation using Adaptive Signal Processing (Chapter 2) • Frequency Estimation from Nonuniform Samples (Chapter 3) • 2D Polar and 3D Spherical Polar Nonuniform Discrete Fourier Transform (Chapter 4) • Robust 3D registration using Spherical Polar Discrete Fourier Transform and Spherical Harmonics (Chapter 5) Even though each of these four methods discussed may seem completely disparate, the underlying motivation for more efficient processing by exploiting the Fourier domain signal structure remains the same. The main contribution of this thesis is the innovation in the analysis, synthesis, discretization of certain well known problems like phasor estimation, frequency estimation, computations of a particular non-uniform Fourier transform and signal registration on the transformed domain. We conduct propositions and evaluations of certain applications relevant algorithms such as, frequency estimation algorithm using non-uniform sampling, polar and spherical polar Fourier transform. The techniques proposed are also useful in the field of computer vision and medical imaging. From a practical perspective, the proposed algorithms are shown to improve the existing solutions in the respective fields where they are applied/evaluated. The formulation and final proposition is shown to have a variety of benefits. Future work with potentials in medical imaging, directional wavelets, volume rendering, video/3D object classifications, high dimensional registration are also discussed in the final chapter. Finally, in the spirit of reproducible research we release the implementation of these algorithms to the public using Github

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF

    Optical communications for transport aircraft

    Get PDF
    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather

    Model-based Analysis and Processing of Speech and Audio Signals

    Get PDF

    Power Quality

    Get PDF
    Electrical power is becoming one of the most dominant factors in our society. Power generation, transmission, distribution and usage are undergoing signifi cant changes that will aff ect the electrical quality and performance needs of our 21st century industry. One major aspect of electrical power is its quality and stability – or so called Power Quality. The view on Power Quality did change over the past few years. It seems that Power Quality is becoming a more important term in the academic world dealing with electrical power, and it is becoming more visible in all areas of commerce and industry, because of the ever increasing industry automation using sensitive electrical equipment on one hand and due to the dramatic change of our global electrical infrastructure on the other. For the past century, grid stability was maintained with a limited amount of major generators that have a large amount of rotational inertia. And the rate of change of phase angle is slow. Unfortunately, this does not work anymore with renewable energy sources adding their share to the grid like wind turbines or PV modules. Although the basic idea to use renewable energies is great and will be our path into the next century, it comes with a curse for the power grid as power fl ow stability will suff er. It is not only the source side that is about to change. We have also seen signifi cant changes on the load side as well. Industry is using machines and electrical products such as AC drives or PLCs that are sensitive to the slightest change of power quality, and we at home use more and more electrical products with switching power supplies or starting to plug in our electric cars to charge batt eries. In addition, many of us have begun installing our own distributed generation systems on our rooft ops using the latest solar panels. So we did look for a way to address this severe impact on our distribution network. To match supply and demand, we are about to create a new, intelligent and self-healing electric power infrastructure. The Smart Grid. The basic idea is to maintain the necessary balance between generators and loads on a grid. In other words, to make sure we have a good grid balance at all times. But the key question that you should ask yourself is: Does it also improve Power Quality? Probably not! Further on, the way how Power Quality is measured is going to be changed. Traditionally, each country had its own Power Quality standards and defi ned its own power quality instrument requirements. But more and more international harmonization efforts can be seen. Such as IEC 61000-4-30, which is an excellent standard that ensures that all compliant power quality instruments, regardless of manufacturer, will produce of measurement instruments so that they can also be used in volume applications and even directly embedded into sensitive loads. But work still has to be done. We still use Power Quality standards that have been writt en decades ago and don’t match today’s technology any more, such as fl icker standards that use parameters that have been defi ned by the behavior of 60-watt incandescent light bulbs, which are becoming extinct. Almost all experts are in agreement - although we will see an improvement in metering and control of the power fl ow, Power Quality will suff er. This book will give an overview of how power quality might impact our lives today and tomorrow, introduce new ways to monitor power quality and inform us about interesting possibilities to mitigate power quality problems. Regardless of any enhancements of the power grid, “Power Quality is just compatibility” like my good old friend and teacher Alex McEachern used to say. Power Quality will always remain an economic compromise between supply and load. The power available on the grid must be suffi ciently clean for the loads to operate correctly, and the loads must be suffi ciently strong to tolerate normal disturbances on the grid

    On-line signal analysis of partial discharges in medium-voltage power cables

    Get PDF
    Partial discharges are symptomatic of many degradation phenomena in power cables and may cause further deterioration of the insulation in many cases. Electrical im- pulses, generated by partial discharges, travel towards the cable ends, and can there be detected using appropriate sensors. Continuous monitoring of the insulation con- dition can be achieved by on-line detection and location of partial discharge (PD) signals. An important aspect of such a diagnostic is the analysis of on-line measure- ments. The research reported in this thesis is aimed at analysis of PD signals from on-line measurements and location of discharge sites. Signal analysis depends on knowledge of both signals and disturbances that are to be expected. To that end, characteristics of PD signals in medium voltage cables are studied in this thesis. The result of this study is a signal model of the propagation path between the discharge site and the sensors. The model accounts for cable sections with di®erent properties, and incorporates the propagation channel load impedances, i.e. the equipment to which a cable is terminated in an on-line situation. The exact propagation properties and load impedances depend on the speci¯c cable connection under test, and are unknown a priori. For this reason, research is conducted on meth- ods that enable experimental characterization of the parameters, by evaluating the response of the cable to applied transients. The presented methods rely on the ex- traction of pulses that are re°ected on impedance transitions within the cable system under test. On-line ¯eld measurements are corrupted by noise and interference, which impede PD signal detection and location. Generally, narrowband interferences resulting from radio broadcasts dominate the measurements, thus prohibiting data-acquisition trig- gered by PD signals. Broadband background noise is present within the entire PD signal bandwidth, and therefore poses a fundamental limit on PD signal analysis. Generally, existing extraction techniques for PD signals only partially exploit a priori knowledge of both signals and interference. In this thesis, matched ¯lters are ap- plied that are derived from the signal model, and are optimally adapted to the signals that can be expected. Besides signal extraction, matched ¯lters provide a means to estimate the PD magnitude and the signal arrival time. Likewise, discharge location methods based on the signal model are proposed, resulting in optimal location esti- mators. Computer simulations illustrate the e®ectiveness of the proposed algorithms and show that the attainable accuracy can be speci¯ed by theoretical bounds. Accurate PD location relies on estimation of the di®erence in arrival times of signals originating from the same discharge. In case of on-line detection, the cable is connected to the grid, and signals are not necessarily re°ected at the cable ends. Therefore signal detection at both sides is generally required for the purpose of dis- charge location. Synchronization of the measurement equipment is achieved using pulses that are injected into the cable connection. Finite-energy disturbances, such as PD signals that originate outside the cable connection under test, frequently occur in on-line situations. Since measurements are synchronously conducted at both cable ends, pulses originating within and outside the cable can be distinguished by examining the di®erence in time of arrival. Moreover, in many situations, the signal direction of arrival can be determined by detecting pulses in two di®erent current paths at a cable termination. This method is applied as an additional technique to discriminate PD signals and disturbances. Based on the results of research, a measurement system is proposed, which enables automated on-line PD detection and location in medium voltage cable connections. The conceptual design is validated by experiments, and the results demonstrate that the practical application is promising

    Space-time adaptive processing techniques for multichannel mobile passive radar

    Get PDF
    Passive radar technology has reached a level of maturity for stationary sensor operations, widely proving the ability to detect, localize and track targets, by exploiting different kinds of illuminators of opportunity. In recent years, a renewed interest from both the scientific community and the industry has opened new perspectives and research areas. One of the most interesting and challenging ones is the use of passive radar sensors onboard moving platforms. This may offer a number of strategic advantages and extend the functionalities of passive radar to applications like synthetic aperture radar (SAR) imaging and ground moving target indication (GMTI). However, these benefits are paid in terms of motion-induced Doppler distortions of the received signals, which can adversely affect the system performance. In the case of surveillance applications, the detection of slowly moving targets is hindered by the Doppler-spread clutter returns, due to platform motion, and requires the use of space-time processing techniques, applied on signals collected by multiple receiving channels. Although in recent technical literature the feasibility of this concept has been preliminarily demonstrated, mobile passive radar is still far from being a mature technology and several issues still need to be addressed, mostly connected to the peculiar characteristics of the passive bistatic scenario. Specifically, significant limitations may come from the continuous and time-varying nature of the typical waveforms of opportunity, not suitable for conventional space-time processing techniques. Moreover, the low directivity of the practical receiving antennas, paired with a bistatic omni-directional illumination, further increases the clutter Doppler bandwidth and results in the simultaneous reception of non-negligible clutter contributions from a very wide angular sector. Such contributions are likely to undergo an angle-dependent imbalance across the receiving channels, exacerbated by the use of low-cost hardware. This thesis takes research on mobile passive radar for surveillance applications one step further, finding solutions to tackle the main limitations deriving from the passive bistatic framework, while preserving the paradigm of a simple system architecture. Attention is devoted to the development of signal processing algorithms and operational strategies for multichannel mobile passive radar, focusing on space-time processing techniques aimed at clutter cancellation and slowly moving target detection and localization. First, a processing scheme based on the displaced phase centre antenna (DPCA) approach is considered, for dual-channel systems. The scheme offers a simple and effective solution for passive radar GMTI, but its cancellation performance can be severely compromised by the presence of angle-dependent imbalances affecting the receiving channels. Therefore, it is paired with adaptive clutter-based calibration techniques, specifically devised for mobile passive radar. By exploiting the fine Doppler resolution offered by the typical long integration times and the one-to-one relationship between angle of arrival and Doppler frequency of the stationary scatterers, the devised techniques compensate for the angle-dependent imbalances and prove largely necessary to guarantee an effective clutter cancellation. Then, the attention is focused on space-time adaptive processing (STAP) techniques for multichannel mobile passive radar. In this case, the clutter cancellation capability relies on the adaptivity of the space-time filter, by resorting to an adjacent-bin post-Doppler (ABPD) approach. This allows to significantly reduce the size of the adaptive problem and intrinsically compensate for potential angle-dependent channel errors, by operating on a clutter subspace accounting for a limited angular sector. Therefore, ad hoc strategies are devised to counteract the effects of channel imbalance on the moving target detection and localization performance. By exploiting the clutter echoes to correct the spatial steering vector mismatch, the proposed STAP scheme is shown to enable an accurate estimation of target direction of arrival (DOA), which represents a critical task in system featuring few wide beam antennas. Finally, a dual cancelled channel STAP scheme is proposed, aimed at further reducing the system computational complexity and the number of required training data, compared to a conventional full-array solution. The proposed scheme simplifies the DOA estimation process and proves to be robust against the adaptivity losses commonly arising in a real bistatic clutter scenario, allowing effective operation even in the case of a limited sample support. The effectiveness of the techniques proposed in this work is validated by means of extensive simulated analyses and applications to real data, collected by an experimental multichannel passive radar installed on a moving platform and based on DVB-T transmission
    corecore