55,178 research outputs found

    On the condition numbers of a multiple generalized eigenvalue

    Full text link
    For standard eigenvalue problems, a closed-form expression for the condition numbers of a multiple eigenvalue is known. In particular, they are uniformly 1 in the Hermitian case, and generally take different values in the non-Hermitian case. We consider the generalized eigenvalue problem and identify the condition numbers of a multiple eigenvalue. Our main result is that a multiple eigenvalue generally has multiple condition numbers, even in the Hermitian definite case. The condition numbers are characterized in terms of the singular values of the outer product of the corresponding left and right eigenvectors

    On condition numbers of polynomial eigenvalue problems with nonsingular leading coefficients

    Full text link
    In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, then it is close to be multiple, and we construct an upper bound for this distance (measured in the euclidean norm). We also derive a new expression for the condition number of a simple eigenvalue, which does not involve eigenvectors. Moreover, an Elsner-like perturbation bound for matrix polynomials is presented.Comment: 4 figure

    Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters

    Full text link
    The paper develops Newton's method of finding multiple eigenvalues with one Jordan block and corresponding generalized eigenvectors for matrices dependent on parameters. It computes the nearest value of a parameter vector with a matrix having a multiple eigenvalue of given multiplicity. The method also works in the whole matrix space (in the absence of parameters). The approach is based on the versal deformation theory for matrices. Numerical examples are given. The implementation of the method in MATLAB code is available.Comment: 19 pages, 3 figure

    Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    Full text link
    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for {\em ab initio} electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods

    Computing the common zeros of two bivariate functions via Bezout resultants

    Get PDF
    The common zeros of two bivariate functions can be computed by finding the common zeros of their polynomial interpolants expressed in a tensor Chebyshev basis. From here we develop a bivariate rootfinding algorithm based on the hidden variable resultant method and B�ezout matrices with polynomial entries. Using techniques including domain subdivision, B�ezoutian regularization and local refinement we are able to reliably and accurately compute the simple common zeros of two smooth functions with polynomial interpolants of very high degree (�≥\ge 1000). We analyze the resultant method and its conditioning by noting that the B�ezout matrices are matrix polynomials. Our robust algorithm is implemented in the roots command in Chebfun2, a software package written in object-oriented MATLAB for computing with bivariate functions

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page
    • …
    corecore