154 research outputs found

    Natural Density Distribution of Hermite Normal Forms of Integer Matrices

    Get PDF
    The Hermite Normal Form (HNF) is a canonical representation of matrices over any principal ideal domain. Over the integers, the distribution of the HNFs of randomly looking matrices is far from uniform. The aim of this article is to present an explicit computation of this distribution together with some applications. More precisely, for integer matrices whose entries are upper bounded in absolute value by a large bound, we compute the asymptotic number of such matrices whose HNF has a prescribed diagonal structure. We apply these results to the analysis of some procedures and algorithms whose dynamics depend on the HNF of randomly looking integer matrices

    Relative Hecke's integral formula for an arbitrary extension of number fields

    Get PDF
    In this article, we present a generalized Hecke's integral formula for an arbitrary extension E/FE/F of number fields. As an application, we present relative versions of the residue formula and Kronecker's limit formula for the "relative" partial zeta function of E/FE/F. This gives a simultaneous generalization of two different known results given by Hecke himself and Yamamoto.Comment: 30 page

    Usability of structured lattices for a post-quantum cryptography: practical computations, and a study of some real Kummer extensions

    Get PDF
    Lattice-based cryptography is an excellent candidate for post-quantum cryptography, i.e. cryptosystems which are resistant to attacks run on quantum computers. For efficiency reason, most of the constructions explored nowadays are based on structured lattices, such as module lattices or ideal lattices. The security of most constructions can be related to the hardness of retrieving a short element in such lattices, and one does not know yet to what extent these additional structures weaken the cryptosystems. A related problem – which is an extension of a classical problem in computational number theory – called the Short Principal Ideal Problem (or SPIP), consists of finding a short generator of a principal ideal. Its assumed hardness has been used to build some cryptographic schemes. However it has been shown to be solvable in quantum polynomial time over cyclotomic fields, through an attack which uses the Log-unit lattice of the field considered. Later, practical results showed that multiquadratic fields were also weak to this strategy. The main general question that we study in this thesis is To what extent can structured lattices be used to build a post-quantum cryptography

    An algorithm for list decoding number field codes

    Get PDF
    We present an algorithm for list decoding codewords of algebraic number field codes in polynomial time. This is the first explicit procedure for decoding number field codes whose construction were previously described by Lenstra [12] and Guruswami [8]. We rely on a new algorithm for computing the Hermite normal form of the basis of an OK -module due to Biasse and Fieker [2] where OK is the ring of integers of a number field K
    • …
    corecore