7,131 research outputs found

    Atomistic-continuum multiscale modelling of magnetisation dynamics at non-zero temperature

    Full text link
    In this article, a few problems related to multiscale modelling of magnetic materials at finite temperatures and possible ways of solving these problems are discussed. The discussion is mainly centred around two established multiscale concepts: the partitioned domain and the upscaling-based methodologies. The major challenge for both multiscale methods is to capture the correct value of magnetisation length accurately, which is affected by a random temperature-dependent force. Moreover, general limitations of these multiscale techniques in application to spin systems are discussed.Comment: 30 page

    Dynamical mechanisms leading to equilibration in two-component gases

    Get PDF
    Demonstrating how microscopic dynamics cause large systems to approach thermal equilibrium remains an elusive, longstanding, and actively-pursued goal of statistical mechanics. We identify here a dynamical mechanism for thermalization in a general class of two-component dynamical Lorentz gases, and prove that each component, even when maintained in a non-equilibrium state itself, can drive the other to a thermal state with a well-defined effective temperature.Comment: 5 pages, 5 figure

    Bell's theorem as a signature of nonlocality: a classical counterexample

    Full text link
    For a system composed of two particles Bell's theorem asserts that averages of physical quantities determined from local variables must conform to a family of inequalities. In this work we show that a classical model containing a local probabilistic interaction in the measurement process can lead to a violation of the Bell inequalities. We first introduce two-particle phase-space distributions in classical mechanics constructed to be the analogs of quantum mechanical angular momentum eigenstates. These distributions are then employed in four schemes characterized by different types of detectors measuring the angular momenta. When the model includes an interaction between the detector and the measured particle leading to ensemble dependencies, the relevant Bell inequalities are violated if total angular momentum is required to be conserved. The violation is explained by identifying assumptions made in the derivation of Bell's theorem that are not fulfilled by the model. These assumptions will be argued to be too restrictive to see in the violation of the Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change

    Bell's theorem as a signature of nonlocality: a classical counterexample

    Full text link
    For a system composed of two particles Bell's theorem asserts that averages of physical quantities determined from local variables must conform to a family of inequalities. In this work we show that a classical model containing a local probabilistic interaction in the measurement process can lead to a violation of the Bell inequalities. We first introduce two-particle phase-space distributions in classical mechanics constructed to be the analogs of quantum mechanical angular momentum eigenstates. These distributions are then employed in four schemes characterized by different types of detectors measuring the angular momenta. When the model includes an interaction between the detector and the measured particle leading to ensemble dependencies, the relevant Bell inequalities are violated if total angular momentum is required to be conserved. The violation is explained by identifying assumptions made in the derivation of Bell's theorem that are not fulfilled by the model. These assumptions will be argued to be too restrictive to see in the violation of the Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change

    Spatially Resolved Thermodynamic Integration: An Efficient Method to Compute Chemical Potentials of Dense Fluids

    Full text link
    Many popular methods for the calculation of chemical potentials rely on the insertion of test particles into the target system. In the case of liquids and liquid mixtures, this procedure increases in difficulty upon increasing density or concentration, and the use of sophisticated enhanced sampling techniques becomes inevitable. In this work we propose an alternative strategy, spatially resolved thermodynamic integration, or SPARTIAN for short. Here, molecules are described with atomistic resolution in a simulation subregion, and as ideal gas particles in a larger reservoir. All molecules are free to diffuse between subdomains adapting their resolution on the fly. To enforce a uniform density profile across the simulation box, a single-molecule external potential is computed, applied, and identified with the difference in chemical potential between the two resolutions. Since the reservoir is represented as an ideal gas bath, this difference exactly amounts to the excess chemical potential of the target system. The present approach surpasses the high density/concentration limitation of particle insertion methods because the ideal gas molecules entering the target system region spontaneously adapt to the local environment. The ideal gas representation contributes negligibly to the computational cost of the simulation, thus allowing one to make use of large reservoirs at minimal expenses. The method has been validated by computing excess chemical potentials for pure Lennard-Jones liquids and mixtures, SPC and SPC/E liquid water, and aqueous solutions of sodium chloride. The reported results well reproduce literature data for these systems

    Integrability and Disorder in Mesoscopic Systems: Application to Orbital Magnetism

    Get PDF
    We present a semiclassical theory of weak disorder effects in small structures and apply it to the magnetic response of non-interacting electrons confined in integrable geometries. We discuss the various averaging procedures describing different experimental situations in terms of one- and two-particle Green functions. We demonstrate that the anomalously large zero-field susceptibility characteristic of clean integrable structures is only weakly suppressed by disorder. This damping depends on the ratio of the typical size of the structure with the two characteristic length scales describing the disorder (elastic mean-free-path and correlation length of the potential) in a power-law form for the experimentally relevant parameter region. We establish the comparison with the available experimental data and we extend the study of the interplay between disorder and integrability to finite magnetic fields.Comment: 38 pages, Latex, 7 Postscript figures, 1 table, to appear in Jour. Math. Physics 199

    Strongly magnetized classical plasma models

    Get PDF
    Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model)

    Drude Weight for the Lieb-Liniger Bose Gas

    Get PDF
    Based on the method of hydrodynamic projections we derive a concise formula for the Drude weight of the repulsive Lieb-Liniger δ\delta-Bose gas. Our formula contains only quantities which are obtainable from the thermodynamic Bethe ansatz. The Drude weight is an infinite-dimensional matrix, or bilinear functional: it is bilinear in the currents, and each current may refer to a general linear combination of the conserved charges of the model. As a by-product we obtain the dynamical two-point correlation functions involving charge and current densities at small wavelengths and long times, and in addition the scaled covariance matrix of charge transfer. We expect that our formulas extend to other integrable quantum models.Comment: 23 pages. v2: improved discussion, typos corrected, references added. v3: 26 pages, further improved discussion, references adde
    corecore