179 research outputs found

    Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

    Full text link
    Let GG be a graph and S\mathcal {S} be a subset of ZZ. A vertex-coloring S\mathcal {S}-edge-weighting of GG is an assignment of weight ss by the elements of S\mathcal {S} to each edge of GG so that adjacent vertices have different sums of incident edges weights. It was proved that every 3-connected bipartite graph admits a vertex-coloring {1,2}\{1,2\}-edge-weighting (Lu, Yu and Zhang, (2011) \cite{LYZ}). In this paper, we show that the following result: if a 3-edge-connected bipartite graph GG with minimum degree δ\delta contains a vertex u∈V(G)u\in V(G) such that dG(u)=δd_G(u)=\delta and G−uG-u is connected, then GG admits a vertex-coloring S\mathcal {S}-edge-weighting for S∈{{0,1},{1,2}}\mathcal {S}\in \{\{0,1\},\{1,2\}\}. In particular, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S\mathcal {S}-edge-weighting for S∈{{0,1},{1,2}}\mathcal {S}\in \{\{0,1\},\{1,2\}\}. The bound is sharp, since there exists a family of infinite bipartite graphs which are 2-connected and do not admit vertex-coloring {1,2}\{1,2\}-edge-weightings or vertex-coloring {0,1}\{0,1\}-edge-weightings.Comment: In this paper, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S-edge-weighting for S\in {{0,1},{1,2}

    Sigma Partitioning: Complexity and Random Graphs

    Full text link
    A sigma partitioning\textit{sigma partitioning} of a graph GG is a partition of the vertices into sets P1,…,PkP_1, \ldots, P_k such that for every two adjacent vertices uu and vv there is an index ii such that uu and vv have different numbers of neighbors in PiP_i. The  sigma number\textit{ sigma number} of a graph GG, denoted by σ(G)\sigma(G), is the minimum number kk such that G G has a sigma partitioning P1,…,PkP_1, \ldots, P_k. Also, a  lucky labeling\textit{ lucky labeling} of a graph GG is a function ℓ:V(G)→N \ell :V(G) \rightarrow \mathbb{N}, such that for every two adjacent vertices v v and u u of G G , ∑w∼vℓ(w)≠∑w∼uℓ(w) \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) (x∼y x \sim y means that x x and yy are adjacent). The  lucky number\textit{ lucky number} of G G , denoted by η(G)\eta(G), is the minimum number kk such that G G has a lucky labeling ℓ:V(G)→Nk \ell :V(G) \rightarrow \mathbb{N}_k. It was conjectured in [Inform. Process. Lett., 112(4):109--112, 2012] that it is NP \mathbf{NP} -complete to decide whether η(G)=2 \eta(G)=2 for a given 3-regular graph GG. In this work, we prove this conjecture. Among other results, we give an upper bound of five for the sigma number of a uniformly random graph

    A Solution to the 1-2-3 Conjecture

    Full text link
    We show that for every graph without isolated edge, the edges can be assigned weights from {1,2,3} so that no two neighbors receive the same sum of incident edge weights. This solves a conjecture of Karo\'{n}ski, Luczak, and Thomason from 2004.Comment: 16 page

    A determinant formula for the Jones polynomial of pretzel knots

    Full text link
    This paper presents an algorithm to construct a weighted adjacency matrix of a plane bipartite graph obtained from a pretzel knot diagram. The determinant of this matrix after evaluation is shown to be the Jones polynomial of the pretzel knot by way of perfect matchings (or dimers) of this graph. The weights are Tutte's activity letters that arise because the Jones polynomial is a specialization of the signed version of the Tutte polynomial. The relationship is formalized between the familiar spanning tree setting for the Tait graph and the perfect matchings of the plane bipartite graph above. Evaluations of these activity words are related to the chain complex for the Champanerkar-Kofman spanning tree model of reduced Khovanov homology.Comment: 19 pages, 12 figures, 2 table

    d-Lucky Labeling of Graphs

    Get PDF
    AbstractLet l: V (G) →N be a labeling of the vertices of a graph G by positive integers. Define , where d(u) denotes the degree of u and N(u) denotes the open neighborhood of u. In this paper we introduce a new labeling called d-lucky labeling and study the same as a vertex coloring problem. We define a labeling l as d-lucky if c(u) ≠ c(v) , for every pair of adjacent vertices u and v in G. The d-lucky number of a graph G, denoted by ηdl(G), is the least positive k such that G has a d-lucky labeling with {1,2, ..., k} as the set of labels. We obtain ηdl(G) = 2 for hypercube network, butterfly network, benes network, mesh network, hypertree and X-tree
    • …
    corecore