49 research outputs found

    07211 Abstracts Collection -- Exact, Approximative, Robust and Certifying Algorithms on Particular Graph Classes

    Get PDF
    From May 20 to May 25, 2007, the Dagstuhl Seminar 07211 ``Exact, Approximative, Robust and Certifying Algorithms on Particular Graph Classes\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Efficient enumeration of maximal split subgraphs and sub-cographs and related classes

    Full text link
    In this paper, we are interested in algorithms that take in input an arbitrary graph GG, and that enumerate in output all the (inclusion-wise) maximal "subgraphs" of GG which fulfil a given property Π\Pi. All over this paper, we study several different properties Π\Pi, and the notion of subgraph under consideration (induced or not) will vary from a result to another. More precisely, we present efficient algorithms to list all maximal split subgraphs, sub-cographs and some subclasses of cographs of a given input graph. All the algorithms presented here run in polynomial delay, and moreover for split graphs it only requires polynomial space. In order to develop an algorithm for maximal split (edge-)subgraphs, we establish a bijection between the maximal split subgraphs and the maximal independent sets of an auxiliary graph. For cographs and some subclasses , the algorithms rely on a framework recently introduced by Conte & Uno called Proximity Search. Finally we consider the extension problem, which consists in deciding if there exists a maximal induced subgraph satisfying a property Π\Pi that contains a set of prescribed vertices and that avoids another set of vertices. We show that this problem is NP-complete for every "interesting" hereditary property Π\Pi. We extend the hardness result to some specific edge version of the extension problem

    Efficient Sampling and Counting of Graph Structures related to Chordal Graphs

    Get PDF
    Counting problems aim to count the number of solutions for a given input, for example, counting the number of variable assignments that satisfy a Boolean formula. Sampling problems aim to produce a random object from a desired distribution, for example, producing a variable assignment drawn uniformly at random from all assignments that satisfy a Boolean formula. The problems of counting and sampling of graph structures on different types of graphs have been studied for decades for their great importance in areas like complexity theory and statistical physics. For many graph structures such as independent sets and acyclic orientations, it is widely believed that no exact or approximate (with an arbitrarily small error) polynomial-time algorithms on general graphs exist. Therefore, the research community studies various types of graphs, aiming either to design a polynomial-time counting or sampling algorithm for such inputs, or to prove a corresponding inapproximability result. Chordal graphs have been studied widely in both AI and theoretical computer science, but their study from the counting perspective has been relatively limited. Previous works showed that some graph structures can be counted in polynomial time on chordal graphs, when their counting on general graphs is provably computationally hard. The main objective of this thesis is to design and analyze counting and sampling algorithms for several well-known graph structures, including independent sets and different types of graph orientations, on chordal graphs. Our contributions can be described from two perspectives: evaluating the performances of some well-known sampling techniques, such as Markov chain Monte Carlo, on chordal graphs; and showing that the chordality does make those counting problems polynomial-time solvable

    On computing tree and path decompositions with metric constraints on the bags

    Get PDF
    We here investigate on the complexity of computing the \emph{tree-length} and the \emph{tree-breadth} of any graph GG, that are respectively the best possible upper-bounds on the diameter and the radius of the bags in a tree decomposition of GG. \emph{Path-length} and \emph{path-breadth} are similarly defined and studied for path decompositions. So far, it was already known that tree-length is NP-hard to compute. We here prove it is also the case for tree-breadth, path-length and path-breadth. Furthermore, we provide a more detailed analysis on the complexity of computing the tree-breadth. In particular, we show that graphs with tree-breadth one are in some sense the hardest instances for the problem of computing the tree-breadth. We give new properties of graphs with tree-breadth one. Then we use these properties in order to recognize in polynomial-time all graphs with tree-breadth one that are planar or bipartite graphs. On the way, we relate tree-breadth with the notion of \emph{kk-good} tree decompositions (for k=1k=1), that have been introduced in former work for routing. As a byproduct of the above relation, we prove that deciding on the existence of a kk-good tree decomposition is NP-complete (even if k=1k=1). All this answers open questions from the literature.Comment: 50 pages, 39 figure

    Simultaneous Graph Representation Problems

    Get PDF
    Many graphs arising in practice can be represented in a concise and intuitive way that conveys their structure. For example: A planar graph can be represented in the plane with points for vertices and non-crossing curves for edges. An interval graph can be represented on the real line with intervals for vertices and intersection of intervals representing edges. The concept of ``simultaneity'' applies for several types of graphs: the idea is to find representations for two graphs that share some common vertices and edges, and ensure that the common vertices and edges are represented the same way. Simultaneous representation problems arise in any situation where two related graphs should be represented consistently. A main instance is for temporal relationships, where an old graph and a new graph share some common parts. Pairs of related graphs arise in many other situations. For example, two social networks that share some members; two schedules that share some events, overlap graphs of DNA fragments of two similar organisms, circuit graphs of two adjacent layers on a computer chip etc. In this thesis, we study the simultaneous representation problem for several graph classes. For planar graphs the problem is defined as follows. Let G1 and G2 be two graphs sharing some vertices and edges. The simultaneous planar embedding problem asks whether there exist planar embeddings (or drawings) for G1 and G2 such that every vertex shared by the two graphs is mapped to the same point and every shared edge is mapped to the same curve in both embeddings. Over the last few years there has been a lot of work on simultaneous planar embeddings, which have been called `simultaneous embeddings with fixed edges'. A major open question is whether simultaneous planarity for two graphs can be tested in polynomial time. We give a linear-time algorithm for testing the simultaneous planarity of any two graphs that share a 2-connected subgraph. Our algorithm also extends to the case of k planar graphs, where each vertex [edge] is either common to all graphs or belongs to exactly one of them. Next we introduce a new notion of simultaneity for intersection graph classes (interval graphs, chordal graphs etc.) and for comparability graphs. For interval graphs, the problem is defined as follows. Let G1 and G2 be two interval graphs sharing some vertices I and the edges induced by I. G1 and G2 are said to be `simultaneous interval graphs' if there exist interval representations of G1 and G2 such that any vertex of I is assigned to the same interval in both the representations. The `simultaneous representation problem' for interval graphs asks whether G1 and G2 are simultaneous interval graphs. The problem is defined in a similar way for other intersection graph classes. For comparability graphs and any intersection graph class, we show that the simultaneous representation problem for the graph class is equivalent to a graph augmentation problem: given graphs G1 and G2, sharing vertices I and the corresponding induced edges, do there exist edges E' between G1-I and G2-I such that the graph G1 U G_2 U E' belongs to the graph class. This equivalence implies that the simultaneous representation problem is closely related to other well-studied classes in the literature, namely, sandwich graphs and probe graphs. We give efficient algorithms for solving the simultaneous representation problem for interval graphs, chordal graphs, comparability graphs and permutation graphs. Further, our algorithms for comparability and permutation graphs solve a more general version of the problem when there are multiple graphs, any two of which share the same common graph. This version of the problem also generalizes probe graphs
    corecore