5,467 research outputs found

    The hardness of routing two pairs on one face

    Full text link
    We prove the NP-completeness of the integer multiflow problem in planar graphs, with the following restrictions: there are only two demand edges, both lying on the infinite face of the routing graph. This was one of the open challenges concerning disjoint paths, explicitly asked by M\"uller. It also strengthens Schw\"arzler's recent proof of one of the open problems of Schrijver's book, about the complexity of the edge-disjoint paths problem with terminals on the outer boundary of a planar graph. We also give a directed acyclic reduction. This proves that the arc-disjoint paths problem is NP-complete in directed acyclic graphs, even with only two demand arcs

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page

    On disjoint paths in acyclic planar graphs

    Full text link
    We give an algorithm with complexity O(f(R)k2k3n)O(f(R)^{k^2} k^3 n) for the integer multiflow problem on instances (G,H,r,c)(G,H,r,c) with GG an acyclic planar digraph and r+cr+c Eulerian. Here, ff is a polynomial function, n=V(G)n = |V(G)|, k=E(H)k = |E(H)| and RR is the maximum request maxhE(H)r(h)\max_{h \in E(H)} r(h). When kk is fixed, this gives a polynomial algorithm for the arc-disjoint paths problem under the same hypothesis
    corecore