86,145 research outputs found

    A Linear Network Code Construction for General Integer Connections Based on the Constraint Satisfaction Problem

    Get PDF
    The problem of finding network codes for general connections is inherently difficult in capacity constrained networks. Resource minimization for general connections with network coding is further complicated. Existing methods for identifying solutions mainly rely on highly restricted classes of network codes, and are almost all centralized. In this paper, we introduce linear network mixing coefficients for code constructions of general connections that generalize random linear network coding (RLNC) for multicast connections. For such code constructions, we pose the problem of cost minimization for the subgraph involved in the coding solution and relate this minimization to a path-based Constraint Satisfaction Problem (CSP) and an edge-based CSP. While CSPs are NP-complete in general, we present a path-based probabilistic distributed algorithm and an edge-based probabilistic distributed algorithm with almost sure convergence in finite time by applying Communication Free Learning (CFL). Our approach allows fairly general coding across flows, guarantees no greater cost than routing, and shows a possible distributed implementation. Numerical results illustrate the performance improvement of our approach over existing methods.Comment: submitted to TON (conference version published at IEEE GLOBECOM 2015

    WiLiTV: A Low-Cost Wireless Framework for Live TV Services

    Full text link
    With the evolution of HDTV and Ultra HDTV, the bandwidth requirement for IP-based TV content is rapidly increasing. Consumers demand uninterrupted service with a high Quality of Experience (QoE). Service providers are constantly trying to differentiate themselves by innovating new ways of distributing content more efficiently with lower cost and higher penetration. In this work, we propose a cost-efficient wireless framework (WiLiTV) for delivering live TV services, consisting of a mix of wireless access technologies (e.g. Satellite, WiFi and LTE overlay links). In the proposed architecture, live TV content is injected into the network at a few residential locations using satellite dishes. The content is then further distributed to other homes using a house-to-house WiFi network or via an overlay LTE network. Our problem is to construct an optimal TV distribution network with the minimum number of satellite injection points, while preserving the highest QoE, for different neighborhood densities. We evaluate the framework using realistic time-varying demand patterns and a diverse set of home location data. Our study demonstrates that the architecture requires 75 - 90% fewer satellite injection points, compared to traditional architectures. Furthermore, we show that most cost savings can be obtained using simple and practical relay routing solutions

    Routing for Security in Networks with Adversarial Nodes

    Full text link
    We consider the problem of secure unicast transmission between two nodes in a directed graph, where an adversary eavesdrops/jams a subset of nodes. This adversarial setting is in contrast to traditional ones where the adversary controls a subset of links. In particular, we study, in the main, the class of routing-only schemes (as opposed to those allowing coding inside the network). Routing-only schemes usually have low implementation complexity, yet a characterization of the rates achievable by such schemes was open prior to this work. We first propose an LP based solution for secure communication against eavesdropping, and show that it is information-theoretically rate-optimal among all routing-only schemes. The idea behind our design is to balance information flow in the network so that no subset of nodes observe "too much" information. Interestingly, we show that the rates achieved by our routing-only scheme are always at least as good as, and sometimes better, than those achieved by "na\"ive" network coding schemes (i.e. the rate-optimal scheme designed for the traditional scenario where the adversary controls links in a network rather than nodes.) We also demonstrate non-trivial network coding schemes that achieve rates at least as high as (and again sometimes better than) those achieved by our routing schemes, but leave open the question of characterizing the optimal rate-region of the problem under all possible coding schemes. We then extend these routing-only schemes to the adversarial node-jamming scenarios and show similar results. During the journey of our investigation, we also develop a new technique that has the potential to derive non-trivial bounds for general secure-communication schemes

    Robust capacitated trees and networks with uniform demands

    Full text link
    We are interested in the design of robust (or resilient) capacitated rooted Steiner networks in case of terminals with uniform demands. Formally, we are given a graph, capacity and cost functions on the edges, a root, a subset of nodes called terminals, and a bound k on the number of edge failures. We first study the problem where k = 1 and the network that we want to design must be a tree covering the root and the terminals: we give complexity results and propose models to optimize both the cost of the tree and the number of terminals disconnected from the root in the worst case of an edge failure, while respecting the capacity constraints on the edges. Second, we consider the problem of computing a minimum-cost survivable network, i.e., a network that covers the root and terminals even after the removal of any k edges, while still respecting the capacity constraints on the edges. We also consider the possibility of protecting a given number of edges. We propose three different formulations: a cut-set based formulation, a flow based one, and a bilevel one (with an attacker and a defender). We propose algorithms to solve each formulation and compare their efficiency

    Multiple Access Trade Study

    Get PDF
    The Personal Access Satellite System (PASS) strawman design uses a hybrid Time Division Multiple Access (TDMA)/Frequency Division Multiple Access (FDMA) implementation. TDMA is used for the forward direction (from Suppliers to Users), and FDMA for the return direction (from Users to Suppliers). An alternative architecture is proposed that will require minimal real time coordination and yet provide a fast access method by using random access Code Division Multiple Access (CDMA). The CDMA system issues are addressed such as connecting suppliers and users, both of whom may be located anywhere in the CONUS, when the user terminals are constrained in size and weight; and providing efficient traffic routing under highly variable traffic requirements. It is assumed that bandwidth efficiency is not of paramount importance. CDMA or Spread Spectrum Multiple Access (SSMA) communication is a method in which a group of carriers operate at the same nominal center frequency but are separable from each other by the low cross correlation of the spreading codes used. Interference and multipath rejection capability, ease of selective addressing and message screening, low density power spectra for signal hiding and security, and high resolution ranging are among the benefits of spread spectrum communications
    corecore