38,103 research outputs found

    A Generic Position Based Method for Real Root Isolation of Zero-Dimensional Polynomial Systems

    Full text link
    We improve the local generic position method for isolating the real roots of a zero-dimensional bivariate polynomial system with two polynomials and extend the method to general zero-dimensional polynomial systems. The method mainly involves resultant computation and real root isolation of univariate polynomial equations. The roots of the system have a linear univariate representation. The complexity of the method is O~B(N10)\tilde{O}_B(N^{10}) for the bivariate case, where N=max(d,τ)N=\max(d,\tau), dd resp., τ\tau is an upper bound on the degree, resp., the maximal coefficient bitsize of the input polynomials. The algorithm is certified with probability 1 in the multivariate case. The implementation shows that the method is efficient, especially for bivariate polynomial systems.Comment: 24 pages, 5 figure

    The Multivariate Resultant is NP-hard in any Characteristic

    Get PDF
    The multivariate resultant is a fundamental tool of computational algebraic geometry. It can in particular be used to decide whether a system of n homogeneous equations in n variables is satisfiable (the resultant is a polynomial in the system's coefficients which vanishes if and only if the system is satisfiable). In this paper we present several NP-hardness results for testing whether a multivariate resultant vanishes, or equivalently for deciding whether a square system of homogeneous equations is satisfiable. Our main result is that testing the resultant for zero is NP-hard under deterministic reductions in any characteristic, for systems of low-degree polynomials with coefficients in the ground field (rather than in an extension). We also observe that in characteristic zero, this problem is in the Arthur-Merlin class AM if the generalized Riemann hypothesis holds true. In positive characteristic, the best upper bound remains PSPACE.Comment: 13 page

    Explicit formulas for the multivariate resultant

    Get PDF
    We present formulas for the homogenous multivariate resultant as a quotient of two determinants. They extend classical Macaulay formulas, and involve matrices of considerably smaller size, whose non zero entries include coefficients of the given polynomials and coefficients of their Bezoutian. These formulas can also be viewed as an explicit computation of the morphisms and the determinant of a resultant complex.Comment: 30 pages, Late

    Solving Degenerate Sparse Polynomial Systems Faster

    Get PDF
    Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F. Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our development we also obtain new explicit formulae for the exact number of isolated roots of F and the intersection multiplicity of the positive-dimensional part of Z. Finally, we present a combinatorial construction of non-degenerate polynomial systems, with specified monomial term structure and maximally many isolated roots, which may be of independent interest.Comment: This is the final journal version of math.AG/9702222 (``Toric Generalized Characteristic Polynomials''). This final version is a major revision with several new theorems, examples, and references. The prior results are also significantly improve

    Sparse implicitization by interpolation: Characterizing non-exactness and an application to computing discriminants

    Get PDF
    We revisit implicitization by interpolation in order to examine its properties in the context of sparse elimination theory. Based on the computation of a superset of the implicit support, implicitization is reduced to computing the nullspace of a numeric matrix. The approach is applicable to polynomial and rational parameterizations of curves and (hyper)surfaces of any dimension, including the case of parameterizations with base points. Our support prediction is based on sparse (or toric) resultant theory, in order to exploit the sparsity of the input and the output. Our method may yield a multiple of the implicit equation: we characterize and quantify this situation by relating the nullspace dimension to the predicted support and its geometry. In this case, we obtain more than one multiples of the implicit equation; the latter can be obtained via multivariate polynomial gcd (or factoring). All of the above techniques extend to the case of approximate computation, thus yielding a method of sparse approximate implicitization, which is important in tackling larger problems. We discuss our publicly available Maple implementation through several examples, including the benchmark of bicubic surface. For a novel application, we focus on computing the discriminant of a multivariate polynomial, which characterizes the existence of multiple roots and generalizes the resultant of a polynomial system. This yields an efficient, output-sensitive algorithm for computing the discriminant polynomial

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Implicitization of curves and (hyper)surfaces using predicted support

    Get PDF
    We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm works even in the presence of base points but, in this case, the implicit equation shall be obtained as a factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well, and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We compare our prototype to existing software and find that it is rather competitive

    On the Complexity of Solving Zero-Dimensional Polynomial Systems via Projection

    Full text link
    Given a zero-dimensional polynomial system consisting of n integer polynomials in n variables, we propose a certified and complete method to compute all complex solutions of the system as well as a corresponding separating linear form l with coefficients of small bit size. For computing l, we need to project the solutions into one dimension along O(n) distinct directions but no further algebraic manipulations. The solutions are then directly reconstructed from the considered projections. The first step is deterministic, whereas the second step uses randomization, thus being Las-Vegas. The theoretical analysis of our approach shows that the overall cost for the two problems considered above is dominated by the cost of carrying out the projections. We also give bounds on the bit complexity of our algorithms that are exclusively stated in terms of the number of variables, the total degree and the bitsize of the input polynomials
    corecore