294 research outputs found

    A new Lenstra-type Algorithm for Quasiconvex Polynomial Integer Minimization with Complexity 2^O(n log n)

    Full text link
    We study the integer minimization of a quasiconvex polynomial with quasiconvex polynomial constraints. We propose a new algorithm that is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). This improvement is achieved by applying a new modern Lenstra-type algorithm, finding optimal ellipsoid roundings, and considering sparse encodings of polynomials. For the bounded case, our algorithm attains a time-complexity of s (r l M d)^{O(1)} 2^{2n log_2(n) + O(n)} when M is a bound on the number of monomials in each polynomial and r is the binary encoding length of a bound on the feasible region. In the general case, s l^{O(1)} d^{O(n)} 2^{2n log_2(n) +O(n)}. In each we assume d>= 2 is a bound on the total degree of the polynomials and l bounds the maximum binary encoding size of the input.Comment: 28 pages, 10 figure

    Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

    Full text link
    We complete the complexity classification by degree of minimizing a polynomial over the integer points in a polyhedron in R2\mathbb{R}^2. Previous work shows that optimizing a quadratic polynomial over the integer points in a polyhedral region in R2\mathbb{R}^2 can be done in polynomial time, while optimizing a quartic polynomial in the same type of region is NP-hard. We close the gap by showing that this problem can be solved in polynomial time for cubic polynomials. Furthermore, we show that the problem of minimizing a homogeneous polynomial of any fixed degree over the integer points in a bounded polyhedron in R2\mathbb{R}^2 is solvable in polynomial time. We show that this holds for polynomials that can be translated into homogeneous polynomials, even when the translation vector is unknown. We demonstrate that such problems in the unbounded case can have smallest optimal solutions of exponential size in the size of the input, thus requiring a compact representation of solutions for a general polynomial time algorithm for the unbounded case

    Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

    Full text link
    The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem's subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call "zero-convexity". This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio

    Workload reduction of a generalized Brownian network

    Full text link
    We consider a dynamic control problem associated with a generalized Brownian network, the objective being to minimize expected discounted cost over an infinite planning horizon. In this Brownian control problem (BCP), both the system manager's control and the associated cumulative cost process may be locally of unbounded variation. Due to this aspect of the cost process, both the precise statement of the problem and its analysis involve delicate technical issues. We show that the BCP is equivalent, in a certain sense, to a reduced Brownian control problem (RBCP) of lower dimension. The RBCP is a singular stochastic control problem, in which both the controls and the cumulative cost process are locally of bounded variation.Comment: Published at http://dx.doi.org/10.1214/105051605000000458 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Integer convex minimization by mixed integer linear optimization

    Get PDF
    Minimizing a convex function over the integral points of a bounded convex set is polynomial in fixed dimension (Grötschel et al., 1988). We provide an alternative, short, and geometrically motivated proof of this result. In particular, we present an oracle-polynomial algorithm based on a mixed integer linear optimization oracle
    corecore