155 research outputs found

    UIO sequence based checking sequences for distributed test architectures

    Get PDF
    This study addresses the construction of a preset checking sequence that will not pose controllability (synchronization) and observability (undetectable output shift) problems when applied in distributed test architectures that utilize remote testers. The controllability problem manifests itself when a tester is required to send the current input and because it did not send the previous input nor did it receive the previous output it cannot determine when to send the input. The observability problem manifests itself when a tester is expecting an output in response to either the previous input or the current input and because it is not the one to send the current input, it cannot determine when to start and stop waiting for the output. Based on UIO sequences, a checking sequence construction method is proposed to yield a sequence that is free from controllability and observability problems

    Generating synchronizable test sequences with overlaps

    Get PDF
    Finite-state-machine-based conformance testing has been comprehensively studied in the literature in the context of centralized test architecture. As distributed test architecture involves multiple remote testers, applying a test sequence generated from a given n-port finite state machine to an implementation under test (IUT) may result in controllability problems. A possible way to resolve this problem is to select an appropriate test sequence, whose application to the IUT will not involve controllability problems. Thus generating such efficient test sequences is an interesting issue. There are several possibilities for such test sequence generation and we provide empirical study to compare the efficiency of two typical solutions proposed in the literature in terms of the length of the generated test sequences. While both of the two techniques rely on solutions to the Rural Postman Problem (RPP), a well-used RPP solution has been adopted and further improved in this thesis work

    The effect of the distributed test architecture on the power of testing

    Get PDF
    Copyright @ 2008 Oxford University PressThere has been much interest in testing from finite-state machines (FSMs). If the system under test can be modelled by the (minimal) FSM N then testing from an (minimal) FSM M is testing to check that N is isomorphic to M. In the distributed test architecture, there are multiple interfaces/ports and there is a tester at each port. This can introduce controllability/synchronization and observability problems. This paper shows that the restriction to test sequences that do not cause controllability problems and the inability to observe the global behaviour in the distributed test architecture, and thus relying only on the local behaviour at remote testers, introduces fundamental limitations into testing. There exist minimal FSMs that are not equivalent, and so are not isomorphic, and yet cannot be distinguished by testing in this architecture without introducing controllability problems. Similarly, an FSM may have non-equivalent states that cannot be distinguished in the distributed test architecture without causing controllability problems: these are said to be locally s-equivalent and otherwise they are locally s-distinguishable. This paper introduces the notion of two states or FSMs being locally s-equivalent and formalizes the power of testing in the distributed test architecture in terms of local s-equivalence. It introduces a polynomial time algorithm that, given an FSM M, determines which states of M are locally s-equivalent and produces minimal length input sequences that locally s-distinguish states that are not locally s-equivalent. An FSM is locally s-minimal if it has no pair of locally s-equivalent states. This paper gives an algorithm that takes an FSM M and returns a locally s-minimal FSM M′ that is locally s-equivalent to M.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)

    Using status messages in the distributed test architecture

    Get PDF
    If the system under test has multiple interfaces/ports and these are physically distributed then in testing we place a tester at each port. If these testers cannot directly communicate with one another and there is no global clock then we are testing in the distributed test architecture. If the distributed test architecture is used then there may be input sequences that cannot be applied in testing without introducing controllability problems. Additionally, observability problems can allow fault masking. In this paper we consider the situation in which the testers can apply a status message: an input that causes the system under test to identify its current state. We show how such a status message can be used in order to overcome controllability and observability problems

    Testing a distributed system: Generating minimal synchronised test sequences that detect output-shifting faults

    Get PDF
    A distributed system may have a number of separate interfaces called ports and in testing it may be necessary to have a separate tester at each port. This introduces a number of issues, including the necessity to use synchronised test sequences and the possibility that output-shifting faults go undetected. This paper considers the problem of generating a minimal synchronised test sequence that detects output-shifting faults when the system is specified using a finite state machine with multiple ports. The set of synchronised test sequences that detect output-shifting faults is represented by a directed graph G and test generation involves finding appropriate tours of G. This approach is illustrated using the test criterion that the test sequence contains a test segment for each transition

    Canonical finite state machines for distributed systems

    Get PDF
    There has been much interest in testing from finite state machines (FSMs) as a result of their suitability for modelling or specifying state-based systems. Where there are multiple ports/interfaces a multi-port FSM is used and in testing, a tester is placed at each port. If the testers cannot communicate with one another directly and there is no global clock then we are testing in the distributed test architecture. It is known that the use of the distributed test architecture can affect the power of testing and recent work has characterised this in terms of local s-equivalence: in the distributed test architecture we can distinguish two FSMs, such as an implementation and a specification, if and only if they are not locally s-equivalent. However, there may be many FSMs that are locally s-equivalent to a given FSM and the nature of these FSMs has not been explored. This paper examines the set of FSMs that are locally s-equivalent to a given FSM M. It shows that there is a unique smallest FSM χmin(M) and a unique largest FSM χmax(M) that are locally s-equivalent to M. Here smallest and largest refer to the set of traces defined by an FSM and thus to its semantics. We also show that for a given FSM M the set of FSMs that are locally s-equivalent to M defines a bounded lattice. Finally, we define an FSM that, amongst all FSMs locally s-equivalent to M, has fewest states. We thus give three alternative canonical FSMs that are locally s-equivalent to an FSM M: one that defines the smallest set of traces, one that defines the largest set of traces, and one with fewest states. All three provide valuable information and the first two can be produced in time that is polynomial in terms of the number of states of M. We prove that the problem of finding an s-equivalent FSM with fewest states is NP-hard in general but can be solved in polynomial time for the special case where there are two ports
    corecore