1,410 research outputs found

    Labeling of graphs, sumset of squares of units modulo n and resonance varieties of matroids

    Get PDF
    This thesis investigates problems in a number of different areas of graph theory and its applications in other areas of mathematics. Motivated by the 1-2-3-Conjecture, we consider the closed distinguishing number of a graph G, denoted by dis[G]. We provide new upper bounds for dis[G] by using the Combinatorial Nullstellensatz. We prove that it is NP-complete to decide for a given planar subcubic graph G, whether dis[G] = 2. We show that for each integer t there is a bipartite graph G such that dis[G] \u3e t. Then some polynomial time algorithms and NP-hardness results for the problem of partitioning the edges of a graph into regular and/or locally irregular subgraphs are presented. We then move on to consider Johnson graphs to find resonance varieties of some classes of sparse paving matroids. The last application we consider is in number theory, where we find the number of solutions of the equation x21 + _ _ _ + x2 k = c, where c 2 Zn, and xi are all units in the ring Zn. Our approach is combinatorial using spectral graph theory

    Sigma Partitioning: Complexity and Random Graphs

    Full text link
    A sigma partitioning\textit{sigma partitioning} of a graph GG is a partition of the vertices into sets P1,…,PkP_1, \ldots, P_k such that for every two adjacent vertices uu and vv there is an index ii such that uu and vv have different numbers of neighbors in PiP_i. The  sigma number\textit{ sigma number} of a graph GG, denoted by σ(G)\sigma(G), is the minimum number kk such that G G has a sigma partitioning P1,…,PkP_1, \ldots, P_k. Also, a  lucky labeling\textit{ lucky labeling} of a graph GG is a function ℓ:V(G)→N \ell :V(G) \rightarrow \mathbb{N}, such that for every two adjacent vertices v v and u u of G G , ∑w∼vℓ(w)≠∑w∼uℓ(w) \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) (x∼y x \sim y means that x x and yy are adjacent). The  lucky number\textit{ lucky number} of G G , denoted by η(G)\eta(G), is the minimum number kk such that G G has a lucky labeling ℓ:V(G)→Nk \ell :V(G) \rightarrow \mathbb{N}_k. It was conjectured in [Inform. Process. Lett., 112(4):109--112, 2012] that it is NP \mathbf{NP} -complete to decide whether η(G)=2 \eta(G)=2 for a given 3-regular graph GG. In this work, we prove this conjecture. Among other results, we give an upper bound of five for the sigma number of a uniformly random graph

    Trade-Offs in Distributed Interactive Proofs

    Get PDF
    The study of interactive proofs in the context of distributed network computing is a novel topic, recently introduced by Kol, Oshman, and Saxena [PODC 2018]. In the spirit of sequential interactive proofs theory, we study the power of distributed interactive proofs. This is achieved via a series of results establishing trade-offs between various parameters impacting the power of interactive proofs, including the number of interactions, the certificate size, the communication complexity, and the form of randomness used. Our results also connect distributed interactive proofs with the established field of distributed verification. In general, our results contribute to providing structure to the landscape of distributed interactive proofs
    • …
    corecore