2,591 research outputs found

    The intersection of two halfspaces has high threshold degree

    Full text link
    The threshold degree of a Boolean function f:{0,1}^n->{-1,+1} is the least degree of a real polynomial p such that f(x)=sgn p(x). We construct two halfspaces on {0,1}^n whose intersection has threshold degree Theta(sqrt n), an exponential improvement on previous lower bounds. This solves an open problem due to Klivans (2002) and rules out the use of perceptron-based techniques for PAC learning the intersection of two halfspaces, a central unresolved challenge in computational learning. We also prove that the intersection of two majority functions has threshold degree Omega(log n), which is tight and settles a conjecture of O'Donnell and Servedio (2003). Our proof consists of two parts. First, we show that for any nonconstant Boolean functions f and g, the intersection f(x)^g(y) has threshold degree O(d) if and only if ||f-F||_infty + ||g-G||_infty < 1 for some rational functions F, G of degree O(d). Second, we settle the least degree required for approximating a halfspace and a majority function to any given accuracy by rational functions. Our technique further allows us to make progress on Aaronson's challenge (2008) and contribute strong direct product theorems for polynomial representations of composed Boolean functions of the form F(f_1,...,f_n). In particular, we give an improved lower bound on the approximate degree of the AND-OR tree.Comment: Full version of the FOCS'09 pape

    The Dual Polynomial of Bipartite Perfect Matching

    Get PDF
    We obtain a description of the Boolean dual function of the Bipartite Perfect Matching decision problem, as a multilinear polynomial over the Reals. We show that in this polynomial, both the number of monomials and the magnitude of their coefficients are at most exponential in O(nlogn)\mathcal{O}(n \log n). As an application, we obtain a new upper bound of O(n1.5logn)\mathcal{O}(n^{1.5} \sqrt{\log n}) on the approximate degree of the bipartite perfect matching function, improving the previous best known bound of O(n1.75)\mathcal{O}(n^{1.75}). We deduce that, beyond a O(logn)\mathcal{O}(\sqrt{\log n}) factor, the polynomial method cannot be used to improve the lower bound on the bounded-error quantum query complexity of bipartite perfect matching

    An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

    Get PDF
    We prove an optimal Ω(n)\Omega(n) lower bound on the randomized communication complexity of the much-studied Gap-Hamming-Distance problem. As a consequence, we obtain essentially optimal multi-pass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The Gap-Hamming-Distance problem is a communication problem, wherein Alice and Bob receive nn-bit strings xx and yy, respectively. They are promised that the Hamming distance between xx and yy is either at least n/2+nn/2+\sqrt{n} or at most n/2nn/2-\sqrt{n}, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS, 2003), it had been conjectured that the naive protocol, which uses nn bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic, or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of C. Borell (1985). To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables
    corecore