3,595 research outputs found

    Broadcasting Automata and Patterns on Z^2

    Get PDF
    The Broadcasting Automata model draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood se- quences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. Algorithms for broad- casting automata model are in the same vain as those encountered in distributed algorithms using a simple notion of waves, messages passed from automata to au- tomata throughout the topology, to construct computations. The waves generated by activating processes in a digital environment can be used for designing a vari- ety of wave algorithms. In this chapter we aim to study the geometrical shapes of informational waves on integer grid generated in broadcasting automata model as well as their potential use for metric approximation in a discrete space. An explo- ration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and gener- ation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are explored with a connection to broadcasting sequences and ap- proximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions

    Learning Moore Machines from Input-Output Traces

    Full text link
    The problem of learning automata from example traces (but no equivalence or membership queries) is fundamental in automata learning theory and practice. In this paper we study this problem for finite state machines with inputs and outputs, and in particular for Moore machines. We develop three algorithms for solving this problem: (1) the PTAP algorithm, which transforms a set of input-output traces into an incomplete Moore machine and then completes the machine with self-loops; (2) the PRPNI algorithm, which uses the well-known RPNI algorithm for automata learning to learn a product of automata encoding a Moore machine; and (3) the MooreMI algorithm, which directly learns a Moore machine using PTAP extended with state merging. We prove that MooreMI has the fundamental identification in the limit property. We also compare the algorithms experimentally in terms of the size of the learned machine and several notions of accuracy, introduced in this paper. Finally, we compare with OSTIA, an algorithm that learns a more general class of transducers, and find that OSTIA generally does not learn a Moore machine, even when fed with a characteristic sample

    Acta Cybernetica : Tomus 5. Fasciculus 2.

    Get PDF

    On complexity of finite Moore automata

    Get PDF

    A Cellular Automata Simulation of the 1990s Russian Housing Privatization Decision

    Get PDF
    The study uses a computational approach to study the phenomenon of housing privatization in Russia in the 1990s. As part of the housing reform flats in multi-family buildings were offered to their residents free of payment. Nevertheless rapid mass housing privatization did not take place. While this outcome admits a number of explanations this analysis emphasizes the fact that the environment in which the decision-making households were operating had a high degree of uncertainty and imposed a high information-processing requirement on the decision-makers. Using the bounded rationality paradigm, the study builds a case for a cellular automata simulation of household decision-making in the context of housing privatization reforms in Russia in the 1990s. Cellular automata is then used to simulate a household’s decision to become the owner of its dwelling.cellular automata, complex systems, housing reform, Russia, simulation

    Acta Cybernetica : Tomus 7. Fasciculus 3.

    Get PDF
    corecore