16,884 research outputs found

    Optimal Worst-Case QoS Routing in Constrained AWGN Channel Network

    Get PDF
    In this paper, we extend the optimal worst-case QoS routing algorithm and metric definition given in [1]. We prove that in addition to the q-ary symmetric and q-ary erasure channel model, the necessary and sufficient conditions defined in [2] for the Generalized Dijkstra's Algorithm (GDA) can be used with a constrained non-negative-mean AWGN channel. The generalization allowed the computation of the worst-case QoS metric value for a given edge weight density. The worst-case value can then be used as the routing metric in networks where some nodes have error correcting capabilities. The result is an optimal worst-case QoS routing algorithm that uses the Generalized Dijkstra's Algorithm as a subroutine with a polynomial time complexity of O(V^3)

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Traffic Engineering in G-MPLS networks with QoS guarantees

    Get PDF
    In this paper a new Traffic Engineering (TE) scheme to efficiently route sub-wavelength requests with different QoS requirements is proposed for G-MPLS networks. In most previous studies on TE based on dynamic traffic grooming, the objectives were to minimize the rejection probability by respecting the constraints of the optical node architecture, but without considering service differentiation. In practice, some high-priority (HP) connections can instead be characterized by specific constraints on the maximum tolerable end-to-end delay and packet-loss ratio. The proposed solution consists of a distributed two-stage scheme: each time a new request arrives, an on-line dynamic grooming scheme finds a route which fulfills the QoS requirements. If a HP request is blocked at the ingress router, a preemption algorithm is executed locally in order to create room for this traffic. The proposed preemption mechanism minimizes the network disruption, both in term of number of rerouted low-priority connections and new set-up lightpaths, and the signaling complexity. Extensive simulation experiments are performed to demonstrate the efficiency of our scheme

    Reliable Energy-Efficient Routing Algorithm for Vehicle-Assisted Wireless Ad-Hoc Networks

    Full text link
    We investigate the design of the optimal routing path in a moving vehicles involved the internet of things (IoT). In our model, jammers exist that may interfere with the information exchange between wireless nodes, leading to worsened quality of service (QoS) in communications. In addition, the transmit power of each battery-equipped node is constrained to save energy. We propose a three-step optimal routing path algorithm for reliable and energy-efficient communications. Moreover, results show that with the assistance of moving vehicles, the total energy consumed can be reduced to a large extend. We also study the impact on the optimal routing path design and energy consumption which is caused by path loss, maximum transmit power constrain, QoS requirement, etc.Comment: 6 pages, 5 figures, rejected by IEEE Globecom 2017,resubmit to IEEE WCNC 201
    corecore