4,061 research outputs found

    Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 B.C.--2017) and another new proof

    Full text link
    In this article, we provide a comprehensive historical survey of 183 different proofs of famous Euclid's theorem on the infinitude of prime numbers. The author is trying to collect almost all the known proofs on infinitude of primes, including some proofs that can be easily obtained as consequences of some known problems or divisibility properties. Furthermore, here are listed numerous elementary proofs of the infinitude of primes in different arithmetic progressions. All the references concerning the proofs of Euclid's theorem that use similar methods and ideas are exposed subsequently. Namely, presented proofs are divided into 8 subsections of Section 2 in dependence of the methods that are used in them. {\bf Related new 14 proofs (2012-2017) are given in the last subsection of Section 2.} In the next section, we survey mainly elementary proofs of the infinitude of primes in different arithmetic progressions. Presented proofs are special cases of Dirichlet's theorem. In Section 4, we give a new simple "Euclidean's proof" of the infinitude of primes.Comment: 70 pages. In this extended third version of the article, 14 new proofs of the infnitude of primes are added (2012-2017

    Fibonacci-Lucas SIC-POVMs

    Full text link
    We present a conjectured family of SIC-POVMs which have an additional symmetry group whose size is growing with the dimension. The symmetry group is related to Fibonacci numbers, while the dimension is related to Lucas numbers. The conjecture is supported by exact solutions for dimensions d=4,8,19,48,124,323, as well as a numerical solution for dimension d=844.Comment: The fiducial vectors can be obtained from http://sicpovm.markus-grassl.de as well as from the source files. v2: precision for the numerical solution in dimension 844 increased to 150 digits and new exact solution for dimension 323 adde

    Deterministic elliptic curve primality proving for a special sequence of numbers

    Full text link
    We give a deterministic algorithm that very quickly proves the primality or compositeness of the integers N in a certain sequence, using an elliptic curve E/Q with complex multiplication by the ring of integers of Q(sqrt(-7)). The algorithm uses O(log N) arithmetic operations in the ring Z/NZ, implying a bit complexity that is quasi-quadratic in log N. Notably, neither of the classical "N-1" or "N+1" primality tests apply to the integers in our sequence. We discuss how this algorithm may be applied, in combination with sieving techniques, to efficiently search for very large primes. This has allowed us to prove the primality of several integers with more than 100,000 decimal digits, the largest of which has more than a million bits in its binary representation. At the time it was found, it was the largest proven prime N for which no significant partial factorization of N-1 or N+1 is known.Comment: 16 pages, corrected a minor sign error in 5.

    Another proof of Pell identities by using the determinant of tridiagonal matrix

    Full text link
    In this paper, another proof of Pell identities is presented by using the determinant of tridiagonal matrices. It is calculated via the Laplace expansion
    corecore