12,237 research outputs found

    Cauchyness and convergence in fuzzy metric spaces

    Full text link
    [EN] In this paper we survey some concepts of convergence and Cauchyness appeared separately in the context of fuzzy metric spaces in the sense of George and Veeramani. For each convergence (Cauchyness) concept we find a compatible Cauchyness (convergence) concept. We also study the relationship among them and the relationship with compactness and completeness (defined in a natural sense for each one of the Cauchy concepts). In particular, we prove that compactness implies p-completeness.Almanzor Sapena acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant TEC2013-45492-R. Valentín Gregori acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant MTM 2012-37894-C02-01.Gregori Gregori, V.; Miñana, J.; Morillas, S.; Sapena Piera, A. (2017). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 111(1):25-37. https://doi.org/10.1007/s13398-015-0272-0S25371111Alaca, C., Turkoglu, D., Yildiz, C.: Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 29, 1073–1078 (2006)Edalat, A., Heckmann, R.: A computational model for metric spaces. Theor. Comput. Sci. 193, 53–73 (1998)Engelking, R.: General topology. PWN-Polish Sci. Publ, Warsawa (1977)Fang, J.X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 46(1), 107–113 (1992)George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64, 395–399 (1994)George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3, 933–940 (1995)George, A., Veeramani, P.: On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 90, 365–368 (1997)Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1989)Gregori, V., Romaguera, S.: Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 115, 485–489 (2000)Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets Syst. 130, 399–404 (2002)Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144, 411–420 (2004)Gregori, V., López-Crevillén, A., Morillas, S., Sapena, A.: On convergence in fuzzy metric spaces. Topol. Appl. 156, 3002–3006 (2009)Gregori, V., Miñana, J.J.: Some concepts realted to continuity in fuzzy metric spaces. In: Proceedings of the conference in applied topology WiAT’13, pp. 85–91 (2013)Gregori, V., Miñana, J.-J., Sapena, A.: On Banach contraction principles in fuzzy metric spaces (2015, submitted)Gregori, V., Miñana, J.-J.: std-Convergence in fuzzy metric spaces. Fuzzy Sets Syst. 267, 140–143 (2015)Gregori, V., Miñana, J.-J.: Strong convergence in fuzzy metric spaces Filomat (2015, accepted)Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets Syst. 204, 71–85 (2012)Gregori, V., Miñana, J.-J., Morillas, S.: A note on convergence in fuzzy metric spaces. Iran. J. Fuzzy Syst. 11(4), 75–85 (2014)Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces. Fuzzy Sets Syst. 161, 2193–2205 (2010)Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metric spaces and applications. Fuzzy Sets Syst. 170, 95–111 (2011)Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11, 326–334 (1975)Mihet, D.: On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets Syst. 158, 915–921 (2007)Mihet, D.: Fuzzy φ\varphi φ -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 159, 739–744 (2008)Mihet, D.: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 431–439 (2004)Mishra, S.N., Sharma, N., Singh, S.L.: Common fixed points of maps on fuzzy metric spaces Internat. J. Math. Math. Sci. 17(2), 253–258 (1994)Morillas, S., Sapena, A.: On Cauchy sequences in fuzzy metric spaces. In: Proceedings of the conference in applied topology (WiAT’13), pp. 101–108 (2013)Ricarte, L.A., Romaguera, S.: A domain-theoretic approach to fuzzy metric spaces. Topol. Appl. 163, 149–159 (2014)Sherwood, H.: On the completion of probabilistic metric spaces. Z.Wahrschein-lichkeitstheorie verw. Geb. 6, 62–64 (1966)Sherwood, H.: Complete Probabilistic Metric Spaces. Z. Wahrschein-lichkeitstheorie verw. Geb. 20, 117–128 (1971)Tirado, P.: On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 9(4), 151–158 (2012)Tirado, P.: Contraction mappings in fuzzy quasi-metric spaces and [0,1]-fuzzy posets. Fixed Point Theory 13(1), 273–283 (2012)Vasuki, R., Veeramani, P.: Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 135(3), 415–417 (2003)Veeramani, P.: Best approximation in fuzzy metric spaces. J. Fuzzy Math. 9, 75–80 (2001

    An identification theorem for the completion of the Hausdorff fuzzy metric

    Full text link
    We prove that given a fuzzy metric space (in the sense of Kramosil and Michalek), the completion of its Hausdorff fuzzy metric space is isometric to the Hausdorff fuzzy metric space of its completion, when the Hausdorff fuzzy metrics are defined on the respective collections of non-empty closed subsets. As a consequence, we deduce the corresponding result for metric spaces by using the standard fuzzy metric. An application to the extension of multivalued mappings and some illustrative examples are also given.Research supported by the Ministry of Economy and Competitiveness of Spain, under Grants MTM2012-37894-C02-01 and MTM2012-37894-C02-02. The first named author also acknowledges financial support from the UPV/EHU under Grants UFI 11/52 and GIU12/39.Gutierrez García, J.; Romaguera Bonilla, S.; Sanchis, M. (2013). An identification theorem for the completion of the Hausdorff fuzzy metric. Fuzzy Sets and Systems. 227:96-106. https://doi.org/10.1016/j.fss.2013.04.012S9610622

    On Yager and Hamacher t-Norms and Fuzzy Metric Spaces

    Full text link
    Recently, Gregori et al. have discussed (Fuzzy Sets Syst 2011;161:2193 2205) the so-called strong fuzzy metrics when looking for a class of completable fuzzy metric spaces in the sense of George and Veeramani and state the question of finding a non-strong fuzzy metric space for a continuous t-norm different from the minimum. Later on, Gutíerrez-García and Romaguera solved this question (Fuzzy Sets Syst 2011;162:91 93) by means of two examples for the product and the Lukasiewicz t-norm, respectively. In this direction, they posed to find further examples of nonstrong fuzzy metrics for continuous t-norms that are greater than the product but different from minimum. In this paper, we found an example of this kind. On the other hand, Tirado established (Fixed Point Theory 2012;13:273 283) a fixed-point theorem in fuzzy metric spaces, which was successfully used to prove the existence and uniqueness of solution for the recurrence equation associated with the probabilistic divide and conquer algorithms. Here, we generalize this result by using a class of continuous t-norms known as ω-Yager t-norms.The second author acknowledges the support of the Ministry of Economy and Competitiveness of Spain under grant MTM2012-37894-C02-01 and the support of Universitat Politecnica de Valencia under grant PAID-06-12-SP20120471.Castro Company, F.; Tirado Peláez, P. (2014). On Yager and Hamacher t-Norms and Fuzzy Metric Spaces. International Journal of Intelligent Systems. 29:1173-1180. https://doi.org/10.1002/int.21688S1173118029Sherwood, H. (1966). On the completion of probabilistic metric spaces. Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(1), 62-64. doi:10.1007/bf00531809Gregori, V. (2002). On completion of fuzzy metric spaces. Fuzzy Sets and Systems, 130(3), 399-404. doi:10.1016/s0165-0114(02)00115-xGregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013Gutiérrez García, J., & Romaguera, S. (2011). Examples of non-strong fuzzy metrics. Fuzzy Sets and Systems, 162(1), 91-93. doi:10.1016/j.fss.2010.09.017Yager, R. R. (1980). On a general class of fuzzy connectives. Fuzzy Sets and Systems, 4(3), 235-242. doi:10.1016/0165-0114(80)90013-5Castro-Company, F., & Tirado, P. (2012). Some classes of t-norms and fuzzy metric spaces. doi:10.1063/1.4756272George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Hadžić, O., & Pap, E. (2001). Fixed Point Theory in Probabilistic Metric Spaces. doi:10.1007/978-94-017-1560-7Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms. Trends in Logic. doi:10.1007/978-94-015-9540-

    A Characterization of Strong Completeness in Fuzzy Metric Spaces

    Full text link
    [EN] Here, we deal with the concept of fuzzy metric space(X,M,*), due to George and Veeramani. Based on the fuzzy diameter for a subset ofX, we introduce the notion of strong fuzzy diameter zero for a family of subsets. Then, we characterize nested sequences of subsets having strong fuzzy diameter zero using their fuzzy diameter. Examples of sequences of subsets which do or do not have strong fuzzy diameter zero are provided. Our main result is the following characterization: a fuzzy metric space is strongly complete if and only if every nested sequence of close subsets which has strong fuzzy diameter zero has a singleton intersection. Moreover, the standard fuzzy metric is studied as a particular case. Finally, this work points out a route of research in fuzzy fixed point theory.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work was also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements Nos. 779776 and 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2020). A Characterization of Strong Completeness in Fuzzy Metric Spaces. Mathematics. 8(6):1-11. https://doi.org/10.3390/math8060861S11186Menger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4Gregori, V. (2002). On completion of fuzzy metric spaces. Fuzzy Sets and Systems, 130(3), 399-404. doi:10.1016/s0165-0114(02)00115-xAtanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3Gregori, V., Romaguera, S., & Veeramani, P. (2006). A note on intuitionistic fuzzy metric spaces☆. Chaos, Solitons & Fractals, 28(4), 902-905. doi:10.1016/j.chaos.2005.08.113Gregori, V., & Sapena, A. (2018). Remarks to «on strong intuitionistic fuzzy metrics». Journal of Nonlinear Sciences and Applications, 11(02), 316-322. doi:10.22436/jnsa.011.02.12Abu-Donia, H. M., Atia, H. A., & Khater, O. M. A. (2020). Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic (ϕ,ψ)-contractive mappings. Journal of Nonlinear Sciences and Applications, 13(06), 323-329. doi:10.22436/jnsa.013.06.03Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 222, 108-114. doi:10.1016/j.fss.2013.01.012Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gregori, V., & Miñana, J.-J. (2017). Strong convergence in fuzzy metric spaces. Filomat, 31(6), 1619-1625. doi:10.2298/fil1706619gGrabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006Vasuki, R., & Veeramani, P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems, 135(3), 415-417. doi:10.1016/s0165-0114(02)00132-xGregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Ricarte, L. A., & Romaguera, S. (2014). A domain-theoretic approach to fuzzy metric spaces. Topology and its Applications, 163, 149-159. doi:10.1016/j.topol.2013.10.014Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043Sherwood, H. (1966). On the completion of probabilistic metric spaces. Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(1), 62-64. doi:10.1007/bf00531809Shukla, S., Gopal, D., & Sintunavarat, W. (2018). A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems, 350, 85-94. doi:10.1016/j.fss.2018.02.010Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Rakić, D., Došenović, T., Mitrović, Z. D., de la Sen, M., & Radenović, S. (2020). Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces. Mathematics, 8(2), 297. doi:10.3390/math802029

    On some results of analysis in metric spaces and fuzzy metric spaces

    Get PDF
    The notion of a fuzzy metric space due to George and Veeramani has many advantages in analysis since many notions and results from classical metric space theory can be extended and generalized to the setting of fuzzy metric spaces, for instance: the notion of completeness, completion of spaces as well as extension of maps. The layout of the dissertation is as follows: Chapter 1 provide the necessary background in the context of metric spaces, while chapter 2 presents some concepts and results from classical metric spaces in the setting of fuzzy metric spaces. In chapter 3 we continue with the study of fuzzy metric spaces, among others we show that: the product of two complete fuzzy metric spaces is also a complete fuzzy metric space. Our main contribution is in chapter 4. We introduce the concept of a standard fuzzy pseudo metric space and present some results on fuzzy metric identification. Furthermore, we discuss some properties of t-nonexpansive maps.Mathematical SciencesM. Sc. (Mathematics

    Quantale-valued Cauchy tower spaces and completeness

    Full text link
    [EN] Generalizing the concept of a probabilistic Cauchy space, we introduce quantale-valued Cauchy tower spaces. These spaces encompass quantale-valued metric spaces, quantale-valued uniform (convergence) tower spaces and quantale-valued convergence tower groups. For special choices of the quantale, classical and probabilistic metric spaces are covered and probabilistic and approach Cauchy spaces arise. We also study completeness and completion in this setting and establish a connection to the Cauchy completeness of a quantale-valued metric space.Jäger, G.; Ahsanullah, TMG. (2021). Quantale-valued Cauchy tower spaces and completeness. Applied General Topology. 22(2):461-481. https://doi.org/10.4995/agt.2021.15610OJS461481222J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1989.T. M. G. Ahsanullah and G. Jäger, Probabilistic uniform convergence spaces redefined, Acta Math. Hungarica 146 (2015), 376-390. https://doi.org/10.1007/s10474-015-0525-6T. M. G. Ahsanullah and G. Jäger, Probabilistic uniformization and probabilistic metrization of probabilistic convergence groups, Math Slovaca 67 (2017), 985-1000. https://doi.org/10.1515/ms-2017-0027P. Brock and D. C. Kent, Approach spaces, limit tower spaces, and probabilistic convergence spaces, Appl. Cat. Structures 5 (1997), 99-110. https://doi.org/10.1023/A:1008633124960H. R. Fischer, Limesräume, Math. Ann. 137 (1959), 269-303. https://doi.org/10.1007/BF01360965R. C. Flagg, Completeness in continuity spaces, in: Category Theory 1991, CMS Conf. Proc. 13 (1992), 183-199.R. C. Flagg, Quantales and continuity spaces, Algebra Univers. 37 (1997), 257-276. https://doi.org/10.1007/s000120050018L. C. Florescu, Probabilistic convergence structures, Aequationes Math. 38 (1989), 123-145. https://doi.org/10.1007/BF01839999G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, Continuous lattices and domains, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511542725D. Hofmann and C. D. Reis, Probabilistic metric spaces as enriched categories, Fuzzy Sets and Systems 210 (2013), 1-21. https://doi.org/10.1016/j.fss.2012.05.005U. Höhle, Commutative, residuated l-monoids, in: Non-classical logics and their applications to fuzzy subsets (U. Höhle, E. P. Klement, eds.), Kluwer, Dordrecht 1995, pp. 53-106. https://doi.org/10.1007/978-94-011-0215-5_5G. Jäger, A convergence theory for probabilistic metric spaces, Quaest. Math. 38 (2015), 587-599. https://doi.org/10.2989/16073606.2014.981734G. Jäger and T. M. G. Ahsanullah, Probabilistic limit groups under a tt-norm, Topology Proceedings 44 (2014), 59-74.G. Jäger and T. M. G. Ahsanullah, Characterization of quantale-valued metric spaces and quantale-valued partial metric spaces by convergence, Applied Gen. Topology 19, no. 1 (2018), 129-144. https://doi.org/10.4995/agt.2018.7849G. Jäger, Quantale-valued uniform convergence towers for quantale-valued metric spaces, Hacettepe J. Math. Stat. 48, no. 5 (2019), 1443-1453. https://doi.org/10.15672/HJMS.2018.585G. Jäger, The Wijsman structure of a quantale-valued metric space, Iranian J. Fuzzy Systems 17, no. 1 (2020), 171-184.H. H. Keller, Die Limes-Uniformisierbarkeit der Limesräume, Math. Ann. 176 (1968), 334-341. https://doi.org/10.1007/BF02052894D. C. Kent and G. D. Richardson, Completions of probabilistic Cauchy spaces, Math. Japonica 48, no. 3 (1998), 399-407.F. W. Lawvere, Metric spaces, generalized logic, and closed categories, Rendiconti del Seminario Matematico e Fisico di Milano 43 (1973), 135-166. Reprinted in: Reprints in Theory and Applications of Categories} 1 (2002), 1-37. https://doi.org/10.1007/BF02924844R. Lowen, Index Analysis, Springer, London, Heidelberg, New York, Dordrecht 2015. https://doi.org/10.1007/978-1-4471-6485-2R. Lowen and Y. J. Lee, Approach theory in merotopic, Cauchy and convergence spaces. I, Acta Math. Hungarica 83, no. 3 (1999), 189-207. https://doi.org/10.1023/A:1006717022079R. Lowen and Y. J. Lee, Approach theory in merotopic, Cauchy and convergence spaces. II, Acta Math. Hungarica 83, no. 3 (1999), 209-229. https://doi.org/10.1023/A:1006769006149R. Lowen and B. Windels, On the quantification of uniform properties, Comment. Math. Univ. Carolin. 38, no. 4 (1997), 749-759.R. Lowen and B. Windels, Approach groups, Rocky Mountain J. Math. 30, no. 3 (2000), 1057-1073. https://doi.org/10.1216/rmjm/1021477259J. Minkler, G. Minkler and G. Richardson, Subcategories of filter tower spaces, Appl. Categ. Structures 9 (2001), 369-379. https://doi.org/10.1023/A:1011226611840H. Nusser, A generalization of probabilistic uniform spaces, Appl. Categ. Structures 10 (2002), 81-98. https://doi.org/10.1023/A:1013375301613H. Nusser, Completion of probabilistic uniform limit spaces, Quaest. Math. 26 (2003), 125-140. https://doi.org/10.2989/16073600309486049G. Preuß, Seminuniform convergence spaces, Math. Japonica 41, no. 3 (1995), 465-491.G. Preuß, Foundations of topology. An approach to convenient topology, Kluwer Academic Publishers, Dordrecht, 2002. https://doi.org/10.1007/978-94-010-0489-3Q. Pu and D. Zhang, Preordered sets valued in a GL-monoid, Fuzzy Sets and Systems 187 (2012), 1-32. https://doi.org/10.1016/j.fss.2011.06.012G. N. Raney, A subdirect-union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4 (1953), 518-512. https://doi.org/10.1090/S0002-9939-1953-0058568-4E. E. Reed, Completion of uniform convergence spaces, Math. Ann. 194 (1971), 83-108. https://doi.org/10.1007/BF01362537G. D. Richardson and D. C. Kent, Probabilistic convergence spaces, J. Austral. Math. Soc. (Series A) 61 (1996), 400-420. https://doi.org/10.1017/S1446788700000483B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland, New York, 1983
    • …
    corecore