19,027 research outputs found

    On the completeness of proving partial correctness

    Get PDF

    A general theorem on the total correctness of programs in a category

    Get PDF
    AbstractIn [7], we presented a completeness theorem for proving partial correctness of programs in a large class of categories. This theorem generalized a classical result of S.Cook [5] for the language of while-programs.Here we address the total correctness of programs. Again, we use the semantics based on partially additive categories, which was introduced by M.A.Arbib and E.G.Manes [3,4,6]. Our theorems generalize the non categorical results of K.R.Apt [1,2]. They are valid for a large class of partially additive categories, including the category of sets and partial functions and the category of sets and relations, i.e. for deterministic and nondeterministic programs

    While Loops in Coq

    Full text link
    While loops are present in virtually all imperative programming languages. They are important both for practical reasons (performing a number of iterations not known in advance) and theoretical reasons (achieving Turing completeness). In this paper we propose an approach for incorporating while loops in an imperative language shallowly embedded in the Coq proof assistant. The main difficulty is that proving the termination of while loops is nontrivial, or impossible in the case of non-termination, whereas Coq only accepts programs endowed with termination proofs. Our solution is based on a new, general method for defining possibly non-terminating recursive functions in Coq. We illustrate the approach by proving termination and partial correctness of a program on linked lists.Comment: In Proceedings FROM 2023, arXiv:2309.1295

    Proving Correctness and Completeness of Normal Programs - a Declarative Approach

    Full text link
    We advocate a declarative approach to proving properties of logic programs. Total correctness can be separated into correctness, completeness and clean termination; the latter includes non-floundering. Only clean termination depends on the operational semantics, in particular on the selection rule. We show how to deal with correctness and completeness in a declarative way, treating programs only from the logical point of view. Specifications used in this approach are interpretations (or theories). We point out that specifications for correctness may differ from those for completeness, as usually there are answers which are neither considered erroneous nor required to be computed. We present proof methods for correctness and completeness for definite programs and generalize them to normal programs. For normal programs we use the 3-valued completion semantics; this is a standard semantics corresponding to negation as finite failure. The proof methods employ solely the classical 2-valued logic. We use a 2-valued characterization of the 3-valued completion semantics which may be of separate interest. The presented methods are compared with an approach based on operational semantics. We also employ the ideas of this work to generalize a known method of proving termination of normal programs.Comment: To appear in Theory and Practice of Logic Programming (TPLP). 44 page

    Correctness and completeness of logic programs

    Full text link
    We discuss proving correctness and completeness of definite clause logic programs. We propose a method for proving completeness, while for proving correctness we employ a method which should be well known but is often neglected. Also, we show how to prove completeness and correctness in the presence of SLD-tree pruning, and point out that approximate specifications simplify specifications and proofs. We compare the proof methods to declarative diagnosis (algorithmic debugging), showing that approximate specifications eliminate a major drawback of the latter. We argue that our proof methods reflect natural declarative thinking about programs, and that they can be used, formally or informally, in every-day programming.Comment: 29 pages, 2 figures; with editorial modifications, small corrections and extensions. arXiv admin note: text overlap with arXiv:1411.3015. Overlaps explained in "Related Work" (p. 21

    Loop Analysis by Quantification over Iterations

    Get PDF
    We present a framework to analyze and verify programs containing loops by using a first-order language of so-called extended expressions. This language can express both functional and temporal properties of loops. We prove soundness and completeness of our framework and use our approach to automate the tasks of partial correctness verification, termination analysis and invariant generation. For doing so, we express the loop semantics as a set of first-order properties over extended expressions and use theorem provers and/or SMT solvers to reason about these properties. Our approach supports full first-order reasoning, including proving program properties with alternation of quantifiers. Our work is implemented in the tool QuIt and successfully evaluated on benchmarks coming from software verification

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin
    corecore