6 research outputs found

    On the completability of incomplete orthogonal Latin rectangles

    Get PDF
    We address the problem of completability for 2-row orthogonal Latin rectangles (OLR2). Our approach is to identify all pairs of incomplete 2-row Latin rectangles that are not com- pletable to an OLR2 and are minimal with respect to this property; i.e., we characterize all circuits of the independence system associated with OLR2. Since there can be no poly- time algorithm generating the clutter of circuits of an arbitrary independence system, our work adds to the few independence systems for which that clutter is fully described. The result has a direct polyhedral implication; it gives rise to inequalities that are valid for the polytope associated with orthogonal Latin squares and thus planar multi-dimensional assign- ment. A complexity result is also at hand: completing a set of (n - 1) incomplete MOLR2 is NP-complete

    On the completability of mutually orthogonal Latin rectangles

    Get PDF
    This thesis examines the completability of an incomplete set of m-row orthogonal Latin rectangles (MOLRm) from a set theoretical viewpoint. We focus on the case of two rows, i.e. MOLR2, and define its independence system (IS) and the associated clutter of bases, which is the collection of all MOLR2. Any such clutter gives rise to a unique clutter of circuits which is the collection of all minimal dependent sets. To decide whether an incomplete set of MOLR2 is completable, it suffices to show that it does not contain a circuit therefore full knowledge of the clutter of circuits is needed. For the IS associated with 2-row orthogonal Latin rectangles (OLR2) we establish a methodology based on the notion of an availability matrix to fully characterise the corresponding clutter of circuits. We prove that..

    Critical sets of full Latin squares

    Get PDF
    This thesis explores the properties of critical sets of the full n-Latin square and related combinatorial structures including full designs, (m,n,2)-balanced Latin rectangles and n-Latin cubes. In Chapter 3 we study known results on designs and the analogies between critical sets of the full n-Latin square and minimal defining sets of the full designs. Next in Chapter 4 we fully classify the critical sets of the full (m,n,2)-balanced Latin square, by describing the precise structures of these critical sets from the smallest to the largest. Properties of different types of critical sets of the full n-Latin square are investigated in Chapter 5. We fully classify the structure of any saturated critical set of the full n-Latin square. We show in Theorem 5.8 that such a critical set has size exactly equal to n³ - 2n² - n. In Section 5.2 we give a construction which provides an upper bound for the size of the smallest critical set of the full n-Latin square. Similarly in Section 5.4, another construction gives a lower bound for the size of the largest non-saturated critical set. We conjecture that these bounds are best possible. Using the results from Chapter 5, we obtain spectrum results on critical sets of the full n-Latin square in Chapter 6. In particular, we show that a critical set of each size between (n - 1)³ + 1 and n(n - 1)² + n - 2 exists. In Chapter 7, we turn our focus to the completability of partial k-Latin squares. The relationship between partial k-Latin squares and semi-k-Latin squares is used to show that any partial k-Latin square of order n with at most (n - 1) non-empty cells is completable. As Latin cubes generalize Latin squares, we attempt to generalize some of the results we have established on k-Latin squares so that they apply to k-Latin cubes. These results are presented in Chapter 8

    Integer and Constraint programming methods for mutually Orthogonal Latin Squares.

    Get PDF
    This thesis examines the Orthogonal Latin Squares (OLS) problem from the viewpoint of Integer and Constraint programming. An Integer Programming (IP) model is proposed and the associated polytope is analysed. We identify several families of strong valid inequalities, namely inequalities arising from cliques, odd holes, antiwebs and wheels of the associated intersection graph. The dimension of the OLS polytope is established and it is proved that certain valid inequalities are facet-inducing. This analysis reveals also a new family of facet-defining inequalities for the polytope associated with the Latin square problem. Separation algorithms of the lowest complexity are presented for particular families of valid inequalities. We illustrate a method for reducing problem's symmetry, which extends previously known results. This allows us to devise an alternative proof for the non-existence of an OLS structure for n = 6, based solely on Linear Programming. Moreover, we present a more general Branch & Cut algorithm for the OLS problem. The algorithm exploits problem structure via integer preprocessing and a specialised branching mechanism. It also incorporates families of strong valid inequalities. Computational analysis is conducted in order to illustrate the significant improvements over simple Branch & Bound. Next, the Constraint Programming (CP) paradigm is examined. Important aspects of designing an efficient CP solver, such as branching strategies and constraint propagation procedures, are evaluated by comprehensive, problem-specific, experiments. The CP algorithms lead to computationally favourable results. In particular, the infeasible case of n = 6, which requires enumerating the entire solution space, is solved in a few seconds. A broader aim of our research is to successfully integrate IP and CP. Hence, we present ideas concerning the unification of IP and CP methods in the form of hybrid algorithms. Two such algorithms are presented and their behaviour is analysed via experimentation. The main finding is that hybrid algorithms are clearly more efficient, as problem size grows, and exhibit a more robust performance than traditional IP and CP algorithms. A hybrid algorithm is also designed for the problem of finding triples of Mutually Orthogonal Latin Squares (MOLS). Given that the OLS problem is a special form of an assignment problem, the last part of the thesis considers multidimensional assignment problems. It introduces a model encompassing all assignment structures, including the case of MOLS. A necessary condition for the existence of an assignment structure is revealed. Relations among assignment problems are also examined, leading to a proposed hierarchy. Further, the polyhedral analysis presented unifies and generalises previous results

    Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism

    Get PDF
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. We then adopt what may be labelled a finitary, evidence-based, `agnostic' perspective and argue that Brouwerian atheism is merely a restricted perspective within the finitary agnostic perspective, whilst Hilbertian theism contradicts the finitary agnostic perspective. We then consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary, evidence-based, definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways. We show that the two definitions correspond to two distinctly different---not necessarily evidence-based but complementary---assignments of satisfaction and truth to the compound formulas of PA over N. We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both the complementary interpretations; and conclude some unsuspected constructive consequences of such complementarity for the foundations of mathematics, logic, philosophy, and the physical sciences
    corecore