956 research outputs found

    Generalizations of Tucker-Fan-Shashkin lemmas

    Full text link
    Tucker and Ky Fan's lemma are combinatorial analogs of the Borsuk-Ulam theorem (BUT). In 1996, Yu. A. Shashkin proved a version of Fan's lemma, which is a combinatorial analog of the odd mapping theorem (OMT). We consider generalizations of these lemmas for BUT-manifolds, i.e. for manifolds that satisfy BUT. Proofs rely on a generalization of the OMT and on a lemma about the doubling of manifolds with boundaries that are BUT-manifolds.Comment: 10 pages, 2 figure

    A Combinatorial Analog of a Theorem of F.J.Dyson

    Get PDF
    Tucker's Lemma is a combinatorial analog of the Borsuk-Ulam theorem and the case n=2 was proposed by Tucker in 1945. Numerous generalizations and applications of the Lemma have appeared since then. In 2006 Meunier proved the Lemma in its full generality in his Ph.D. thesis. There are generalizations and extensions of the Borsuk-Ulam theorem that do not yet have combinatorial analogs. In this note, we give a combinatorial analog of a result of Freeman J. Dyson and show that our result is equivalent to Dyson's theorem. As with Tucker's Lemma, we hope that this will lead to generalizations and applications and ultimately a combinatorial analog of Yang's theorem of which both Borsuk-Ulam and Dyson are special cases.Comment: Original version: 7 pages, 2 figures. Revised version: 12 pages, 4 figures, revised proofs. Final revised version: 9 pages, 2 figures, revised proof

    Combinatorial Stokes formulas via minimal resolutions

    Get PDF
    We describe an explicit chain map from the standard resolution to the minimal resolution for the finite cyclic group Z_k of order k. We then demonstrate how such a chain map induces a "Z_k-combinatorial Stokes theorem", which in turn implies "Dold's theorem" that there is no equivariant map from an n-connected to an n-dimensional free Z_k-complex. Thus we build a combinatorial access road to problems in combinatorics and discrete geometry that have previously been treated with methods from equivariant topology. The special case k=2 for this is classical; it involves Tucker's (1949) combinatorial lemma which implies the Borsuk-Ulam theorem, its proof via chain complexes by Lefschetz (1949), the combinatorial Stokes formula of Fan (1967), and Meunier's work (2006).Comment: 18 page

    Balanced Islands in Two Colored Point Sets in the Plane

    Get PDF
    Let SS be a set of nn points in general position in the plane, rr of which are red and bb of which are blue. In this paper we prove that there exist: for every α[0,12]\alpha \in \left [ 0,\frac{1}{2} \right ], a convex set containing exactly αr\lceil \alpha r\rceil red points and exactly αb\lceil \alpha b \rceil blue points of SS; a convex set containing exactly r+12\left \lceil \frac{r+1}{2}\right \rceil red points and exactly b+12\left \lceil \frac{b+1}{2}\right \rceil blue points of SS. Furthermore, we present polynomial time algorithms to find these convex sets. In the first case we provide an O(n4)O(n^4) time algorithm and an O(n2logn)O(n^2\log n) time algorithm in the second case. Finally, if αr+αb\lceil \alpha r\rceil+\lceil \alpha b\rceil is small, that is, not much larger than 13n\frac{1}{3}n, we improve the running time to O(nlogn)O(n \log n)

    Ramsey expansions of metrically homogeneous graphs

    Full text link
    We discuss the Ramsey property, the existence of a stationary independence relation and the coherent extension property for partial isometries (coherent EPPA) for all classes of metrically homogeneous graphs from Cherlin's catalogue, which is conjectured to include all such structures. We show that, with the exception of tree-like graphs, all metric spaces in the catalogue have precompact Ramsey expansions (or lifts) with the expansion property. With two exceptions we can also characterise the existence of a stationary independence relation and the coherent EPPA. Our results can be seen as a new contribution to Ne\v{s}et\v{r}il's classification programme of Ramsey classes and as empirical evidence of the recent convergence in techniques employed to establish the Ramsey property, the expansion (or lift or ordering) property, EPPA and the existence of a stationary independence relation. At the heart of our proof is a canonical way of completing edge-labelled graphs to metric spaces in Cherlin's classes. The existence of such a "completion algorithm" then allows us to apply several strong results in the areas that imply EPPA and respectively the Ramsey property. The main results have numerous corollaries on the automorphism groups of the Fra\"iss\'e limits of the classes, such as amenability, unique ergodicity, existence of universal minimal flows, ample generics, small index property, 21-Bergman property and Serre's property (FA).Comment: 57 pages, 14 figures. Extends results of arXiv:1706.00295. Minor revisio

    A Geometric Approach to Combinatorial Fixed-Point Theorems

    Full text link
    We develop a geometric framework that unifies several different combinatorial fixed-point theorems related to Tucker's lemma and Sperner's lemma, showing them to be different geometric manifestations of the same topological phenomena. In doing so, we obtain (1) new Tucker-like and Sperner-like fixed-point theorems involving an exponential-sized label set; (2) a generalization of Fan's parity proof of Tucker's Lemma to a much broader class of label sets; and (3) direct proofs of several Sperner-like lemmas from Tucker's lemma via explicit geometric embeddings, without the need for topological fixed-point theorems. Our work naturally suggests several interesting open questions for future research.Comment: 10 pages; an extended abstract appeared at Eurocomb 201
    corecore