268 research outputs found

    A study of (xvt,xvt−1)-minihypers in PG(t,q)

    Get PDF
    AbstractWe study (xvt,xvt−1)-minihypers in PG(t,q), i.e. minihypers with the same parameters as a weighted sum of x hyperplanes. We characterize these minihypers as a nonnegative rational sum of hyperplanes and we use this characterization to extend and improve the main results of several papers which have appeared on the special case t=2. We establish a new link with coding theory and we use this link to construct several new infinite classes of (xvt,xvt−1)-minihypers in PG(t,q) that cannot be written as an integer sum of hyperplanes

    Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad

    Get PDF
    Let F and F' be two fields such that F' is a quadratic Galois extension of F. If vertical bar F vertical bar >= 3, then we provide sufficient conditions for a hyperplane of the Hermitian dual polar space DH(5, F') to arise from the Grassmann embedding. We use this to give an alternative proof for the fact that all hyperplanes of DH(5, q(2)), q not equal 2, arise from the Grassmann embedding, and to show that every hyperplane of DH(5, F') that contains a quad Q is either classical or the extension of a non-classical ovoid of Q. We will also give a classification of the hyperplanes of DH(5, F') that contain a quad and arise from the Grassmann embedding

    The use of blocking sets in Galois geometries and in related research areas

    Get PDF
    Blocking sets play a central role in Galois geometries. Besides their intrinsic geometrical importance, the importance of blocking sets also arises from the use of blocking sets for the solution of many other geometrical problems, and problems in related research areas. This article focusses on these applications to motivate researchers to investigate blocking sets, and to motivate researchers to investigate the problems that can be solved by using blocking sets. By showing the many applications on blocking sets, we also wish to prove that researchers who improve results on blocking sets in fact open the door to improvements on the solution of many other problems

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let H∗H^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code C⊥C^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H∗),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201
    • …
    corecore