993 research outputs found

    On homogeneous planar functions

    Full text link
    Let pp be an odd prime and \F_q be the finite field with q=pnq=p^n elements. A planar function f:\F_q\rightarrow\F_q is called homogenous if f(λx)=λdf(x)f(\lambda x)=\lambda^df(x) for all \lambda\in\F_p and x\in\F_q, where dd is some fixed positive integer. We characterize x2x^2 as the unique homogenous planar function over \F_{p^2} up to equivalence.Comment: Introduction modified to: 1. give the correct definition of equivalence, 2. add some references. Other part unaltere

    Exceptional planar polynomials

    Full text link
    Planar functions are special functions from a finite field to itself that give rise to finite projective planes and other combinatorial objects. We consider polynomials over a finite field KK that induce planar functions on infinitely many extensions of KK; we call such polynomials exceptional planar. Exceptional planar monomials have been recently classified. In this paper we establish a partial classification of exceptional planar polynomials. This includes results for the classical planar functions on finite fields of odd characteristic and for the recently proposed planar functions on finite fields of characteristic two

    A new family of semifields with 2 parameters

    Get PDF
    A new family of commutative semifields with two parameters is presented. Its left and middle nucleus are both determined. Furthermore, we prove that for any different pairs of parameters, these semifields are not isotopic. It is also shown that, for some special parameters, one semifield in this family can lead to two inequivalent planar functions. Finally, using similar construction, new APN functions are given

    Planar functions over fields of characteristic two

    Full text link
    Classical planar functions are functions from a finite field to itself and give rise to finite projective planes. They exist however only for fields of odd characteristic. We study their natural counterparts in characteristic two, which we also call planar functions. They again give rise to finite projective planes, as recently shown by the second author. We give a characterisation of planar functions in characteristic two in terms of codes over Z4\mathbb{Z}_4. We then specialise to planar monomial functions f(x)=cxtf(x)=cx^t and present constructions and partial results towards their classification. In particular, we show that t=1t=1 is the only odd exponent for which f(x)=cxtf(x)=cx^t is planar (for some nonzero cc) over infinitely many fields. The proof techniques involve methods from algebraic geometry.Comment: 23 pages, minor corrections and simplifications compared to the first versio

    Irreducibility properties of Keller maps

    Get PDF
    Jedrzejewicz showed that a polynomial map over a field of characteristic zero is invertible, if and only if the corresponding endomorphism maps irreducible polynomials to irreducible polynomials. Furthermore, he showed that a polynomial map over a field of characteristic zero is a Keller map, if and only if the corresponding endomorphism maps irreducible polynomials to square-free polynomials. We show that the latter endomorphism maps other square-free polynomials to square-free polynomials as well. In connection with the above classification of invertible polynomial maps and the Jacobian Conjecture, we study irreducible properties of several types of Keller maps, to each of which the Jacobian Conjecture can be reduced. Herewith, we generalize the result of Bakalarski, that the components of cubic homogeneous Keller maps with a symmetric Jacobian matrix (over C and hence any field of characteristic zero) are irreducible. Furthermore, we show that the Jacobian Conjecture can even be reduced to any of these types with the extra condition that each affinely linear combination of the components of the polynomial map is irreducible. This is somewhat similar to reducing the planar Jacobian Conjecture to the so-called (planar) weak Jacobian Conjecture by Kaliman.Comment: 22 page

    Discrete phase-space approach to mutually orthogonal Latin squares

    Full text link
    We show there is a natural connection between Latin squares and commutative sets of monomials defining geometric structures in finite phase-space of prime power dimensions. A complete set of such monomials defines a mutually unbiased basis (MUB) and may be associated with a complete set of mutually orthogonal Latin squares (MOLS). We translate some possible operations on the monomial sets into isomorphisms of Latin squares, and find a general form of permutations that map between Latin squares corresponding to unitarily equivalent mutually unbiased sets. We extend this result to a conjecture: MOLS associated to unitarily equivalent MUBs will always be isomorphic, and MOLS associated to unitarily inequivalent MUBs will be non-isomorphic
    • …
    corecore