439 research outputs found

    On determinism versus nondeterminism for restarting automata

    Get PDF
    AbstractA restarting automaton processes a given word by executing a sequence of local simplifications until a simple word is obtained that the automaton then accepts. Such a computation is expressed as a sequence of cycles. A nondeterministic restarting automaton M is called correctness preserving, if, for each cycle u⊢Mcv, the string v belongs to the characteristic language LC(M) of M, if the string u does. Our first result states that for each type of restarting automaton X∈{R,RW,RWW,RL,RLW,RLWW}, if M is a nondeterministic X-automaton that is correctness preserving, then there exists a deterministic X-automaton M1 such that the characteristic languages LC(M1) and LC(M) coincide. When a restarting automaton M executes a cycle that transforms a string from the language LC(M) into a string not belonging to LC(M), then this can be interpreted as an error of M. By counting the number of cycles it may take M to detect this error, we obtain a measure for the influence that errors have on computations. Accordingly, this measure is called error detection distance. It turns out, however, that an X-automaton with bounded error detection distance is equivalent to a correctness preserving X-automaton, and therewith to a deterministic X-automaton. This means that nondeterminism increases the expressive power of X-automata only in combination with an unbounded error detection distance

    Automata with modulo counters and nondeterministic counter bounds

    Get PDF
    We introduce and investigate Nondeterministically Bounded Modulo Counter Automata (NBMCA), which are two-way one-head automata that comprise a constant number of modulo counters, where the counter bounds are nondeterministically guessed, and this is the only element of nondeterminism. NBMCA are tailored to recognising those languages that are characterised by the existence of a specific factorisation of their words, e. g., pattern languages. In this work, we subject NBMCA to a theoretically sound analysis

    Clearing Restarting Automata

    Get PDF
    Restartovací automaty byly navrženy jako model pro redukční analýzu, která představuje lingvisticky motivovanou metodu pro kontrolu korektnosti věty. Cílem práce je studovat omezenější modely restartovacích automatů, které smí vymazat podřetězec nebo jej nahradit speciálním pomocným symbolem, jenom na základě omezeného lokálního kontextu tohoto podřetězce. Tyto restartovací automaty se nazývají clearing restarting automata. V práci jsou taktéž zkoumány uzávěrové vlastnosti těchto automatů, jejich vztah k Chomskeho hierarchii a možnosti učení těchto automatů na základě pozitivních a negativních příkladů.Restarting automata were introduced as a model for analysis by reduction which is a linguistically motivated method for checking correctness of a sentence. The goal of the thesis is to study more restricted models of restarting automata which based on a limited context can either delete a substring of the current content of its tape or replace a substring by a special symbol, which cannot be overwritten anymore, but it can be deleted later. Such restarting automata are called clearing restarting automata. The thesis investigates the properties of clearing restarting automata, their relation to Chomsky hierarchy and possibilities for machine learning of such automata from positive and negative samples.Department of Software and Computer Science EducationKatedra softwaru a výuky informatikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Automata with Modulo Counters and Nondeterministic Counter Bounds

    Get PDF
    We introduce and investigate Nondeterministically Bounded Modulo Counter Automata (NBMCA), which are two-way multi-head automata that comprise a constant number of modulo counters, where the counter bounds are nondeterministically guessed, and this is the only element of nondeterminism. NBMCA are tailored to recognising those languages that are characterised by the existence of a specific factorisation of their words, e. g., pattern languages. In this work, we subject NBMCA to a theoretically sound analysis

    Acta Cybernetica : Volume 22. Number 3.

    Get PDF

    On the membership problem for pattern languages and related topics

    Get PDF
    In this thesis, we investigate the complexity of the membership problem for pattern languages. A pattern is a string over the union of the alphabets A and X, where X := {x_1, x_2, x_3, ...} is a countable set of variables and A is a finite alphabet containing terminals (e.g., A := {a, b, c, d}). Every pattern, e.g., p := x_1 x_2 a b x_2 b x_1 c x_2, describes a pattern language, i.e., the set of all words that can be obtained by uniformly substituting the variables in the pattern by arbitrary strings over A. Hence, u := cacaaabaabcaccaa is a word of the pattern language of p, since substituting cac for x_1 and aa for x_2 yields u. On the other hand, there is no way to obtain the word u' := bbbababbacaaba by substituting the occurrences of x_1 and x_2 in p by words over A. The problem to decide for a given pattern q and a given word w whether or not w is in the pattern language of q is called the membership problem for pattern languages. Consequently, (p, u) is a positive instance and (p, u') is a negative instance of the membership problem for pattern languages. For the unrestricted case, i.e., for arbitrary patterns and words, the membership problem is NP-complete. In this thesis, we identify classes of patterns for which the membership problem can be solved efficiently. Our first main result in this regard is that the variable distance, i.e., the maximum number of different variables that separate two consecutive occurrences of the same variable, substantially contributes to the complexity of the membership problem for pattern languages. More precisely, for every class of patterns with a bounded variable distance the membership problem can be solved efficiently. The second main result is that the same holds for every class of patterns with a bounded scope coincidence degree, where the scope coincidence degree is the maximum number of intervals that cover a common position in the pattern, where each interval is given by the leftmost and rightmost occurrence of a variable in the pattern. The proof of our first main result is based on automata theory. More precisely, we introduce a new automata model that is used as an algorithmic framework in order to show that the membership problem for pattern languages can be solved in time that is exponential only in the variable distance of the corresponding pattern. We then take a closer look at this automata model and subject it to a sound theoretical analysis. The second main result is obtained in a completely different way. We encode patterns and words as relational structures and we then reduce the membership problem for pattern languages to the homomorphism problem of relational structures, which allows us to exploit the concept of the treewidth. This approach turns out be successful, and we show that it has potential to identify further classes of patterns with a polynomial time membership problem. Furthermore, we take a closer look at two aspects of pattern languages that are indirectly related to the membership problem. Firstly, we investigate the phenomenon that patterns can describe regular or context-free languages in an unexpected way, which implies that their membership problem can be solved efficiently. In this regard, we present several sufficient conditions and necessary conditions for the regularity and context-freeness of pattern languages. Secondly, we compare pattern languages with languages given by so-called extended regular expressions with backreferences (REGEX). The membership problem for REGEX languages is very important in practice and since REGEX are similar to pattern languages, it might be possible to improve algorithms for the membership problem for REGEX languages by investigating their relationship to patterns. In this regard, we investigate how patterns can be extended in order to describe large classes of REGEX languages
    corecore