87 research outputs found

    On Colorings and Orientations of Signed Graphs

    Get PDF
    A classical theorem independently due to Gallai and Roy states that a graph G has a proper k-coloring if and only if G has an orientation without coherent paths of length k. An analogue of this result for signed graphs is proved in this article

    The frequency assignment problem

    Get PDF
    This thesis examines a wide collection of frequency assignment problems. One of the largest topics in this thesis is that of L(2,1)-labellings of outerplanar graphs. The main result in this topic is the fact that there exists a polynomial time algorithm to determine the minimum L(2,1)-span for an outerplanar graph. This result generalises the analogous result for trees, solves a stated open problem and complements the fact that the problem is NP-complete for planar graphs. We furthermore give best possible bounds on the minimum L(2,1)-span and the cyclic-L(2,1)-span in outerplanar graphs, when the maximum degree is at least eight. We also give polynomial time algorithms for solving the standard constraint matrix problem for several classes of graphs, such as chains of triangles, the wheel and a larger class of graphs containing the wheel. We furthermore introduce the concept of one-close-neighbour problems, which have some practical applications. We prove optimal results for bipartite graphs, odd cycles and complete multipartite graphs. Finally we evaluate different algorithms for the frequency assignment problem, using domination analysis. We compute bounds for the domination number of some heuristics for both the fixed spectrum version of the frequency assignment problem and the minimum span frequency assignment problem. Our results show that the standard greedy algorithm does not perform well, compared to some slightly more advanced algorithms, which is what we would expect. In this thesis we furthermore give some background and motivation for the topics being investigated, as well as mentioning several open problems.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called ā€œcolorsā€ to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k āˆ’ 1), conļ¬rming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We deļ¬ne the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive diļ¬€erent colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Master index of volumes 61ā€“70

    Get PDF
    • ā€¦
    corecore