56,249 research outputs found

    Scalar Levin-Type Sequence Transformations

    Get PDF
    Sequence transformations are important tools for the convergence acceleration of slowly convergent scalar sequences or series and for the summation of divergent series. Transformations that depend not only on the sequence elements or partial sums sns_n but also on an auxiliary sequence of so-called remainder estimates ωn\omega_n are of Levin-type if they are linear in the sns_n, and nonlinear in the ωn\omega_n. Known Levin-type sequence transformations are reviewed and put into a common theoretical framework. It is discussed how such transformations may be constructed by either a model sequence approach or by iteration of simple transformations. As illustration, two new sequence transformations are derived. Common properties and results on convergence acceleration and stability are given. For important special cases, extensions of the general results are presented. Also, guidelines for the application of Levin-type sequence transformations are discussed, and a few numerical examples are given.Comment: 59 pages, LaTeX, invited review for J. Comput. Applied Math., abstract shortene

    Implementation of the Combined--Nonlinear Condensation Transformation

    Full text link
    We discuss several applications of the recently proposed combined nonlinear-condensation transformation (CNCT) for the evaluation of slowly convergent, nonalternating series. These include certain statistical distributions which are of importance in linguistics, statistical-mechanics theory, and biophysics (statistical analysis of DNA sequences). We also discuss applications of the transformation in experimental mathematics, and we briefly expand on further applications in theoretical physics. Finally, we discuss a related Mathematica program for the computation of Lerch's transcendent.Comment: 23 pages, 1 table, 1 figure (Comput. Phys. Commun., in press

    Mathematical Properties of a New Levin-Type Sequence Transformation Introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. I. Algebraic Theory

    Full text link
    \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la [J. Math. Phys. \textbf{44}, 962 - 968 (2003)] introduced in connection with the summation of the divergent perturbation expansion of the hydrogen atom in an external magnetic field a new sequence transformation which uses as input data not only the elements of a sequence {sn}n=0\{s_n \}_{n=0}^{\infty} of partial sums, but also explicit estimates {ωn}n=0\{\omega_n \}_{n=0}^{\infty} for the truncation errors. The explicit incorporation of the information contained in the truncation error estimates makes this and related transformations potentially much more powerful than for instance Pad\'{e} approximants. Special cases of the new transformation are sequence transformations introduced by Levin [Int. J. Comput. Math. B \textbf{3}, 371 - 388 (1973)] and Weniger [Comput. Phys. Rep. \textbf{10}, 189 - 371 (1989), Sections 7 -9; Numer. Algor. \textbf{3}, 477 - 486 (1992)] and also a variant of Richardson extrapolation [Phil. Trans. Roy. Soc. London A \textbf{226}, 299 - 349 (1927)]. The algebraic theory of these transformations - explicit expressions, recurrence formulas, explicit expressions in the case of special remainder estimates, and asymptotic order estimates satisfied by rational approximants to power series - is formulated in terms of hitherto unknown mathematical properties of the new transformation introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. This leads to a considerable formal simplification and unification.Comment: 41 + ii pages, LaTeX2e, 0 figures. Submitted to Journal of Mathematical Physic

    How well can we guess theoretical uncertainties?

    Full text link
    The problem of estimating the effect of missing higher orders in perturbation theory is analyzed with emphasis in the application to Higgs production in gluon-gluon fusion. Well-known mathematical methods for an approximated completion of the perturbative series are applied with the goal to not truncate the series, but complete it in a well-defined way, so as to increase the accuracy - if not the precision - of theoretical predictions. The uncertainty arising from the use of the completion procedure is discussed and a recipe for constructing a corresponding probability distribution function is proposed
    corecore