134,640 research outputs found

    Meso-scale turbulence in living fluids

    Full text link
    Turbulence is ubiquitous, from oceanic currents to small-scale biological and quantum systems. Self-sustained turbulent motion in microbial suspensions presents an intriguing example of collective dynamical behavior amongst the simplest forms of life, and is important for fluid mixing and molecular transport on the microscale. The mathematical characterization of turbulence phenomena in active non-equilibrium fluids proves even more difficult than for conventional liquids or gases. It is not known which features of turbulent phases in living matter are universal or system-specific, or which generalizations of the Navier-Stokes equations are able to describe them adequately. Here, we combine experiments, particle simulations, and continuum theory to identify the statistical properties of self-sustained meso-scale turbulence in active systems. To study how dimensionality and boundary conditions affect collective bacterial dynamics, we measured energy spectra and structure functions in dense Bacillus subtilis suspensions in quasi-2D and 3D geometries. Our experimental results for the bacterial flow statistics agree well with predictions from a minimal model for self-propelled rods, suggesting that at high concentrations the collective motion of the bacteria is dominated by short-range interactions. To provide a basis for future theoretical studies, we propose a minimal continuum model for incompressible bacterial flow. A detailed numerical analysis of the 2D case shows that this theory can reproduce many of the experimentally observed features of self-sustained active turbulence.Comment: accepted PNAS version, 6 pages, click doi for Supplementary Informatio

    Probabilistic Infinite Secret Sharing

    Full text link
    The study of probabilistic secret sharing schemes using arbitrary probability spaces and possibly infinite number of participants lets us investigate abstract properties of such schemes. It highlights important properties, explains why certain definitions work better than others, connects this topic to other branches of mathematics, and might yield new design paradigms. A probabilistic secret sharing scheme is a joint probability distribution of the shares and the secret together with a collection of secret recovery functions for qualified subsets. The scheme is measurable if the recovery functions are measurable. Depending on how much information an unqualified subset might have, we define four scheme types: perfect, almost perfect, ramp, and almost ramp. Our main results characterize the access structures which can be realized by schemes of these types. We show that every access structure can be realized by a non-measurable perfect probabilistic scheme. The construction is based on a paradoxical pair of independent random variables which determine each other. For measurable schemes we have the following complete characterization. An access structure can be realized by a (measurable) perfect, or almost perfect scheme if and only if the access structure, as a subset of the Sierpi\'nski space {0,1}P\{0,1\}^P, is open, if and only if it can be realized by a span program. The access structure can be realized by a (measurable) ramp or almost ramp scheme if and only if the access structure is a GδG_\delta set (intersection of countably many open sets) in the Sierpi\'nski topology, if and only if it can be realized by a Hilbert-space program

    Projective Techniques and Functional Integration

    Get PDF
    A general framework for integration over certain infinite dimensional spaces is first developed using projective limits of a projective family of compact Hausdorff spaces. The procedure is then applied to gauge theories to carry out integration over the non-linear, infinite dimensional spaces of connections modulo gauge transformations. This method of evaluating functional integrals can be used either in the Euclidean path integral approach or the Lorentzian canonical approach. A number of measures discussed are diffeomorphism invariant and therefore of interest to (the connection dynamics version of) quantum general relativity. The account is pedagogical; in particular prior knowledge of projective techniques is not assumed. (For the special JMP issue on Functional Integration, edited by C. DeWitt-Morette.)Comment: 36 pages, latex, no figures, Preprint CGPG/94/10-

    Noncommutative Lattices and Their Continuum Limits

    Get PDF
    We consider finite approximations of a topological space MM by noncommutative lattices of points. These lattices are structure spaces of noncommutative CC^*-algebras which in turn approximate the algebra \cc(M) of continuous functions on MM. We show how to recover the space MM and the algebra \cc(M) from a projective system of noncommutative lattices and an inductive system of noncommutative CC^*-algebras, respectively.Comment: 22 pages, 8 Figures included in the LaTeX Source New version, minor modifications (typos corrected) and a correction in the list of author

    Non-local energetics of random heterogeneous lattices

    Full text link
    In this paper, we study the mechanics of statistically non-uniform two-phase elastic discrete structures. In particular, following the methodology proposed in (Luciano and Willis, Journal of the Mechanics and Physics of Solids 53, 1505-1522, 2005), energetic bounds and estimates of the Hashin-Shtrikman-Willis type are developed for discrete systems with a heterogeneity distribution quantified by second-order spatial statistics. As illustrated by three numerical case studies, the resulting expressions for the ensemble average of the potential energy are fully explicit, computationally feasible and free of adjustable parameters. Moreover, the comparison with reference Monte-Carlo simulations confirms a notable improvement in accuracy with respect to approaches based solely on the first-order statistics.Comment: 32 pages, 8 figure

    Continuum limit of amorphous elastic bodies: A finite-size study of low frequency harmonic vibrations

    Full text link
    The approach of the elastic continuum limit in small amorphous bodies formed by weakly polydisperse Lennard-Jones beads is investigated in a systematic finite-size study. We show that classical continuum elasticity breaks down when the wavelength of the sollicitation is smaller than a characteristic length of approximately 30 molecular sizes. Due to this surprisingly large effect ensembles containing up to N=40,000 particles have been required in two dimensions to yield a convincing match with the classical continuum predictions for the eigenfrequency spectrum of disk-shaped aggregates and periodic bulk systems. The existence of an effective length scale \xi is confirmed by the analysis of the (non-gaussian) noisy part of the low frequency vibrational eigenmodes. Moreover, we relate it to the {\em non-affine} part of the displacement fields under imposed elongation and shear. Similar correlations (vortices) are indeed observed on distances up to \xi~30 particle sizes.Comment: 28 pages, 13 figures, 3 table
    corecore