7,829 research outputs found

    On the equivalence between the cell-based smoothed finite element method and the virtual element method

    Get PDF
    We revisit the cell-based smoothed finite element method (SFEM) for quadrilateral elements and extend it to arbitrary polygons and polyhedrons in 2D and 3D, respectively. We highlight the similarity between the SFEM and the virtual element method (VEM). Based on the VEM, we propose a new stabilization approach to the SFEM when applied to arbitrary polygons and polyhedrons. The accuracy and the convergence properties of the SFEM are studied with a few benchmark problems in 2D and 3D linear elasticity. Later, the SFEM is combined with the scaled boundary finite element method to problems involving singularity within the framework of the linear elastic fracture mechanics in 2D

    High-temperature expansion for Ising models on quasiperiodic tilings

    Full text link
    We consider high-temperature expansions for the free energy of zero-field Ising models on planar quasiperiodic graphs. For the Penrose and the octagonal Ammann-Beenker tiling, we compute the expansion coefficients up to 18th order. As a by-product, we obtain exact vertex-averaged numbers of self-avoiding polygons on these quasiperiodic graphs. In addition, we analyze periodic approximants by computing the partition function via the Kac-Ward determinant. For the critical properties, we find complete agreement with the commonly accepted conjecture that the models under consideration belong to the same universality class as those on periodic two-dimensional lattices.Comment: 24 pages, 8 figures (EPS), uses IOP styles (included
    corecore