74 research outputs found

    Network Information Flow with Correlated Sources

    Full text link
    In this paper, we consider a network communications problem in which multiple correlated sources must be delivered to a single data collector node, over a network of noisy independent point-to-point channels. We prove that perfect reconstruction of all the sources at the sink is possible if and only if, for all partitions of the network nodes into two subsets S and S^c such that the sink is always in S^c, we have that H(U_S|U_{S^c}) < \sum_{i\in S,j\in S^c} C_{ij}. Our main finding is that in this setup a general source/channel separation theorem holds, and that Shannon information behaves as a classical network flow, identical in nature to the flow of water in pipes. At first glance, it might seem surprising that separation holds in a fairly general network situation like the one we study. A closer look, however, reveals that the reason for this is that our model allows only for independent point-to-point channels between pairs of nodes, and not multiple-access and/or broadcast channels, for which separation is well known not to hold. This ``information as flow'' view provides an algorithmic interpretation for our results, among which perhaps the most important one is the optimality of implementing codes using a layered protocol stack.Comment: Final version, to appear in the IEEE Transactions on Information Theory -- contains (very) minor changes based on the last round of review

    Linear Finite-Field Deterministic Networks With Many Sources and One Destination

    Get PDF
    We find the capacity region of linear finite-field deterministic networks with many sources and one destination. Nodes in the network are subject to interference and broadcast constraints, specified by the linear finite-field deterministic model. Each node can inject its own information as well as relay other nodes' information. We show that the capacity region coincides with the cut-set region. Also, for a specific case of correlated sources we provide necessary and sufficient conditions for the sources transmissibility. Given the "deterministic model" approximation for the corresponding Gaussian network model, our results may be relevant to wireless sensor networks where the sensing nodes multiplex the relayed data from the other nodes with their own data, and where the goal is to decode all data at a single "collector" node.Comment: 5 pages, 3 figures, submitted to ISIT 201

    Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Get PDF
    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained

    Editorial

    Get PDF

    Asymptotically optimal time synchronization in dense sensor networks

    Full text link
    • …
    corecore