3,508 research outputs found

    Capacity of wireless erasure networks

    Get PDF
    In this paper, a special class of wireless networks, called wireless erasure networks, is considered. In these networks, each node is connected to a set of nodes by possibly correlated erasure channels. The network model incorporates the broadcast nature of the wireless environment by requiring each node to send the same signal on all outgoing channels. However, we assume there is no interference in reception. Such models are therefore appropriate for wireless networks where all information transmission is packetized and where some mechanism for interference avoidance is already built in. This paper looks at multicast problems over these networks. The capacity under the assumption that erasure locations on all the links of the network are provided to the destinations is obtained. It turns out that the capacity region has a nice max-flow min-cut interpretation. The definition of cut-capacity in these networks incorporates the broadcast property of the wireless medium. It is further shown that linear coding at nodes in the network suffices to achieve the capacity region. Finally, the performance of different coding schemes in these networks when no side information is available to the destinations is analyzed

    A Practical Scheme for Wireless Network Operation

    Get PDF
    In many problems in wireline networks, it is known that achieving capacity on each link or subnetwork is optimal for the entire network operation. In this paper, we present examples of wireless networks in which decoding and achieving capacity on certain links or subnetworks gives us lower rates than other simple schemes, like forwarding. This implies that the separation of channel and network coding that holds for many classes of wireline networks does not, in general, hold for wireless networks. Next, we consider Gaussian and erasure wireless networks where nodes are permitted only two possible operations: nodes can either decode what they receive (and then re-encode and transmit the message) or simply forward it. We present a simple greedy algorithm that returns the optimal scheme from the exponential-sized set of possible schemes. This algorithm will go over each node at most once to determine its operation, and hence, is very efficient. We also present a decentralized algorithm whose performance can approach the optimum arbitrarily closely in an iterative fashion

    Spatially Coupled LDPC Codes for Decode-and-Forward in Erasure Relay Channel

    Full text link
    We consider spatially-coupled protograph-based LDPC codes for the three terminal erasure relay channel. It is observed that BP threshold value, the maximal erasure probability of the channel for which decoding error probability converges to zero, of spatially-coupled codes, in particular spatially-coupled MacKay-Neal code, is close to the theoretical limit for the relay channel. Empirical results suggest that spatially-coupled protograph-based LDPC codes have great potential to achieve theoretical limit of a general relay channel.Comment: 7 pages, extended version of ISIT201

    Bilayer Low-Density Parity-Check Codes for Decode-and-Forward in Relay Channels

    Full text link
    This paper describes an efficient implementation of binning for the relay channel using low-density parity-check (LDPC) codes. We devise bilayer LDPC codes to approach the theoretically promised rate of the decode-and-forward relaying strategy by incorporating relay-generated information bits in specially designed bilayer graphical code structures. While conventional LDPC codes are sensitively tuned to operate efficiently at a certain channel parameter, the proposed bilayer LDPC codes are capable of working at two different channel parameters and two different rates: that at the relay and at the destination. To analyze the performance of bilayer LDPC codes, bilayer density evolution is devised as an extension of the standard density evolution algorithm. Based on bilayer density evolution, a design methodology is developed for the bilayer codes in which the degree distribution is iteratively improved using linear programming. Further, in order to approach the theoretical decode-and-forward rate for a wide range of channel parameters, this paper proposes two different forms bilayer codes, the bilayer-expurgated and bilayer-lengthened codes. It is demonstrated that a properly designed bilayer LDPC code can achieve an asymptotic infinite-length threshold within 0.24 dB gap to the Shannon limits of two different channels simultaneously for a wide range of channel parameters. By practical code construction, finite-length bilayer codes are shown to be able to approach within a 0.6 dB gap to the theoretical decode-and-forward rate of the relay channel at a block length of 10510^5 and a bit-error probability (BER) of 10410^{-4}. Finally, it is demonstrated that a generalized version of the proposed bilayer code construction is applicable to relay networks with multiple relays.Comment: Submitted to IEEE Trans. Info. Theor

    Spatially-Coupled LDPC Codes for Decode-and-Forward Relaying of Two Correlated Sources over the BEC

    Get PDF
    We present a decode-and-forward transmission scheme based on spatially-coupled low-density parity-check (SC-LDPC) codes for a network consisting of two (possibly correlated) sources, one relay, and one destination. The links between the nodes are modeled as binary erasure channels. Joint source-channel coding with joint channel decoding is used to exploit the correlation. The relay performs network coding. We derive analytical bounds on the achievable rates for the binary erasure time-division multiple-access relay channel with correlated sources. We then design bilayer SC-LDPC codes and analyze their asymptotic performance for this scenario. We prove analytically that the proposed coding scheme achieves the theoretical limit for symmetric channel conditions and uncorrelated sources. Using density evolution, we furthermore demonstrate that our scheme approaches the theoretical limit also for non-symmetric channel conditions and when the sources are correlated, and we observe the threshold saturation effect that is typical for spatially-coupled systems. Finally, we give simulation results for large block lengths, which validate the DE analysis.Comment: IEEE Transactions on Communications, to appea

    Capacity for Half-Duplex Line Networks with Two Sources

    Full text link
    The focus is on noise-free half-duplex line networks with two sources where the first node and either the second node or the second-last node in the cascade act as sources. In both cases, we establish the capacity region of rates at which both sources can transmit independent information to a common sink. The achievability scheme presented for the first case is constructive while the achievability scheme for the second case is based on a random coding argument.Comment: Proceedings of the IEEE International Symposium on Information Theory, Austin, TX, USA, June 12 - 18, 201

    Non-Coherent Cooperative Communications Dispensing with Channel Estimation Relying on Erasure Insertion Aided Reed-Solomon Coded SFH M-ary FSK Subjected to Partial-Band Interference and Rayleigh Fading

    No full text
    The rationale of our design is that although much of the literature of cooperative systems assumes perfect coherent detection, the assumption of having any channel estimates at the relays imposes an unreasonable burden on the relay station. Hence, non-coherently detected Reed-Solomon (ReS) coded Slow Frequency Hopping (SFH) assisted M -ary Frequency Shift Keying (FSK) is proposed for cooperative wireless networks, subjected to both partial-band interference and Rayleigh fading. Erasure insertion (EI) assisted ReS decoding based on the joint maximum output-ratio threshold test (MO-RTT) is investigated in order to evaluate the attainable system performance. Compared to the conventional error-correction-only decoder, the EI scheme may achieve an Eb/N0 gain of approximately 3dB at the Codeword Error Probability, Pw , of 10-4 , when employing the ReS (31, 20) code combined with 32-FSK modulation. Additionally, we evaluated the system’s performance, when either equal gain combining (EGC) or selection combining (SC) techniques are employed at the destination’s receiver. The results demonstrated that in the presence of one and two assisting relays, the EGC scheme achieves gains of 1.5 dB and 1.0 dB at the Pw of 10-6 , respectively, compared to the SC arrangement. Furthermore, we demonstrated that for the same coding rate and packet size, the ReS (31, 20) code using EI decoding is capable of outperforming convolutional coding, when 32-FSK modulation is considered, whilst LDPC coding had an edge over the above two schemes
    corecore