140 research outputs found

    Project Tech Top study of lunar, planetary and solar topography Final report

    Get PDF
    Data acquisition techniques for information on lunar, planetary, and solar topograph

    2D Color Code Interference Cancellation by Super Imposing Methodology

    Get PDF
    Abstract-Today the 2-D barcodes have become more popular for information embedding. To encode information with high spatial density while ensuring robust reading by an optical system is the main goal of a barcode system. To enhance the density of information, different ink colors could be used. A High Capacity Color Barcode framework is proposed by exploiting the spectral diversity afforded by the Cyan, Magenta, Yellow print colorant channels and the complimentary Red, Green and Blue channels, respectively, used for capturing color images. Here a three-fold increase in the data rate is achieved by encoding independent data in the C, M, and Y print colorant channels and decoding the data from the complimentary R, G, and B channels captured via a mobile phone camera. This paper presents a framework of color barcode for mobile phone applications by exploiting the spectral diversity afforded by the cyan (C), magenta (M), and yellow (Y) print colorant channels which is more commonly used for color printing and the complementary in order to red (R), green (G), and blue (B) channels, respectively, used for capturing color images. In this paper the system exploit this spectral diversity to understand three-fold increase in the data rate by encoding independent data in the C, M, and Y print colorant channels and decoding the data from the complementary R, G, and B channels captured via a mobile phone camera. To mitigate the effect of cross-channel interference among the print colorant and capture color channels, the system develops an algorithm for interference cancellation which is based on a physically-motivated mathematical model for the print and capture processes. To collect the model parameters which are necessary for cross-channel interference cancellation, this scheme proposes a super imposing methodology. Experimental result clears that the scheme framework successfully overcomes the impact of the color interference, providing a low bit error rate and a high decoding rate for each of the colorant channels when used with a corresponding error correction scheme

    VHDL implementation of an image processing chip

    Get PDF
    Digital copiers and printers require that processing steps be performed on image data after it is captured and before it is finally printed. Grayscale data is typically captured using an image scanner or generated using image composition software. Single bit data is usually printed using a laser, LED, ink-jet, or thermal writer. This thesis describes the design of an ASIC that implements several image processing algorithms. Image histogram modification and convolution filtering are used for operating on gray data. Ordered dither, error diffusion and thresholding convert gray data to binary. A pipe line architecture is used to maximize both the modularity and the throughput of the design. A CPU interface is used to allow flexible programming of the image processing parameters. The design is implemented and simulation stimulus is generated entirely in VHDL. A design of this type allows many of the image processing operations commonly required in digital copiers and printers to be performed in real time rather than as a pre-processing software step. The programmability of the image processing parameters makes the design suitable for a wide variety of applications. The use of VHDL for the design allows flexibility in selecting the target implementation technology for synthesis

    Modeling and Halftoning for Multichannel Printers: A Spectral Approach

    Get PDF
    Printing has been has been the major communication medium for many centuries. In the last twenty years, multichannel printing has brought new opportunities and challenges. Beside of extended colour gamut of the multichannel printer, the opportunity was presented to use a multichannel printer for ‘spectral printing’. The aim of spectral printing is typically the same as for colour printing; that is, to match input signal with printing specific ink combinations. In order to control printers so that the combination or mixture of inks results in specific colour or spectra requires a spectral reflectance printer model that estimates reflectance spectra from nominal dot coverage. The printer models have one of the key roles in accurate communication of colour to the printed media. Accordingly, this has been one of the most active research areas in printing. The research direction was toward improvement of the model accuracy, model simplicity and toward minimal resources used by the model in terms of computational power and usage of material. The contribution of the work included in the thesis is also directed toward improvement of the printer models but for the multichannel printing. The thesis is focused primarily on improving existing spectral printer models and developing a new model. In addition, the aim was to develop and implement a multichannel halftoning method which should provide with high image quality. Therefore, the research goals of the thesis were: maximal accuracy of printer models, optimal resource usage and maximal image quality of halftoning and whole spectral reproduction system. Maximal colour accuracy of a model but with the least resources used is achieved by optimizing printer model calibration process. First, estimation of the physical and optical dot gain is performed with newly proposed method and model. Second, a custom training target is estimated using the proposed new method. These two proposed methods and one proposed model were at the same time the means of optimal resource usage, both in computational time and material. The third goal was satisfied with newly proposed halftoning method for multichannel printing. This method also satisfies the goal of optimal computational time but with maintaining high image quality. When applied in spectral reproduction workflow, this halftoning reduces noise induced in an inversion of the printer model. Finally, a case study was conducted on the practical use of multichannel printers and spectral reproduction workflow. In addition to a gamut comparison in colour space, it is shown that otherwise limited reach of spectral printing could potentially be used to simulate spectra and colour of textile fabrics
    • …
    corecore