33,351 research outputs found

    On Constant Gaps for the Two-way Gaussian Interference Channel

    Full text link
    We introduce the two-way Gaussian interference channel in which there are four nodes with four independent messages: two-messages to be transmitted over a Gaussian interference channel in the \rightarrow direction, simultaneously with two-messages to be transmitted over an interference channel (in-band, full-duplex) in the \leftarrow direction. In such a two-way network, all nodes are transmitters and receivers of messages, allowing them to adapt current channel inputs to previously received channel outputs. We propose two new outer bounds on the symmetric sum-rate for the two-way Gaussian interference channel with complex channel gains: one under full adaptation (all 4 nodes are permitted to adapt inputs to previous outputs), and one under partial adaptation (only 2 nodes are permitted to adapt, the other 2 are restricted). We show that simple non-adaptive schemes such as the Han and Kobayashi scheme, where inputs are functions of messages only and not past outputs, utilized in each direction are sufficient to achieve within a constant gap of these fully or partially adaptive outer bounds for all channel regimes.Comment: presented at 50th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, October 201

    Divide-and-conquer: Approaching the capacity of the two-pair bidirectional Gaussian relay network

    Get PDF
    The capacity region of multi-pair bidirectional relay networks, in which a relay node facilitates the communication between multiple pairs of users, is studied. This problem is first examined in the context of the linear shift deterministic channel model. The capacity region of this network when the relay is operating at either full-duplex mode or half-duplex mode for arbitrary number of pairs is characterized. It is shown that the cut-set upper-bound is tight and the capacity region is achieved by a so called divide-and-conquer relaying strategy. The insights gained from the deterministic network are then used for the Gaussian bidirectional relay network. The strategy in the deterministic channel translates to a specific superposition of lattice codes and random Gaussian codes at the source nodes and successive interference cancelation at the receiving nodes for the Gaussian network. The achievable rate of this scheme with two pairs is analyzed and it is shown that for all channel gains it achieves to within 3 bits/sec/Hz per user of the cut-set upper-bound. Hence, the capacity region of the two-pair bidirectional Gaussian relay network to within 3 bits/sec/Hz per user is characterized.Comment: IEEE Trans. on Information Theory, accepte

    Enabling the Multi-User Generalized Degrees of Freedom in the Gaussian Cellular Channel

    Full text link
    There has been major progress over the last decade in understanding the classical interference channel (IC). Recent key results show that constant bit gap capacity results can be obtained from linear deterministic models (LDMs). However, it is widely unrecognized that the time-invariant, frequency-flat cellular channel, which contains the IC as a special case, possesses some additional generalized degrees of freedom (GDoF) due to multi-user operation. This was proved for the LDM cellular channel very recently but is an open question for the corresponding Gaussian counterpart. In this paper, we close this gap and provide an achievable sum-rate for the Gaussian cellular channel which is within a constant bit gap of the LDM sum capacity. We show that the additional GDoFs from the LDM cellular channel carry over. This is enabled by signal scale alignment. In particular, the multi-user gain reduces the interference by half in the 2-user per cell case compared to the IC.Comment: 5 pages, to appear in IEEE ITW 2014, Hobart, Australi

    Information Transmission using the Nonlinear Fourier Transform, Part III: Spectrum Modulation

    Full text link
    Motivated by the looming "capacity crunch" in fiber-optic networks, information transmission over such systems is revisited. Among numerous distortions, inter-channel interference in multiuser wavelength-division multiplexing (WDM) is identified as the seemingly intractable factor limiting the achievable rate at high launch power. However, this distortion and similar ones arising from nonlinearity are primarily due to the use of methods suited for linear systems, namely WDM and linear pulse-train transmission, for the nonlinear optical channel. Exploiting the integrability of the nonlinear Schr\"odinger (NLS) equation, a nonlinear frequency-division multiplexing (NFDM) scheme is presented, which directly modulates non-interacting signal degrees-of-freedom under NLS propagation. The main distinction between this and previous methods is that NFDM is able to cope with the nonlinearity, and thus, as the the signal power or transmission distance is increased, the new method does not suffer from the deterministic cross-talk between signal components which has degraded the performance of previous approaches. In this paper, emphasis is placed on modulation of the discrete component of the nonlinear Fourier transform of the signal and some simple examples of achievable spectral efficiencies are provided.Comment: Updated version of IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 4346--4369, July, 201
    corecore