60,624 research outputs found

    Redundancy Allocation of Partitioned Linear Block Codes

    Full text link
    Most memories suffer from both permanent defects and intermittent random errors. The partitioned linear block codes (PLBC) were proposed by Heegard to efficiently mask stuck-at defects and correct random errors. The PLBC have two separate redundancy parts for defects and random errors. In this paper, we investigate the allocation of redundancy between these two parts. The optimal redundancy allocation will be investigated using simulations and the simulation results show that the PLBC can significantly reduce the probability of decoding failure in memory with defects. In addition, we will derive the upper bound on the probability of decoding failure of PLBC and estimate the optimal redundancy allocation using this upper bound. The estimated redundancy allocation matches the optimal redundancy allocation well.Comment: 5 pages, 2 figures, to appear in IEEE International Symposium on Information Theory (ISIT), Jul. 201

    New constructions of WOM codes using the Wozencraft ensemble

    Get PDF
    In this paper we give several new constructions of WOM codes. The novelty in our constructions is the use of the so called Wozencraft ensemble of linear codes. Specifically, we obtain the following results. We give an explicit construction of a two-write Write-Once-Memory (WOM for short) code that approaches capacity, over the binary alphabet. More formally, for every \epsilon>0, 0<p<1 and n =(1/\epsilon)^{O(1/p\epsilon)} we give a construction of a two-write WOM code of length n and capacity H(p)+1-p-\epsilon. Since the capacity of a two-write WOM code is max_p (H(p)+1-p), we get a code that is \epsilon-close to capacity. Furthermore, encoding and decoding can be done in time O(n^2.poly(log n)) and time O(n.poly(log n)), respectively, and in logarithmic space. We obtain a new encoding scheme for 3-write WOM codes over the binary alphabet. Our scheme achieves rate 1.809-\epsilon, when the block length is exp(1/\epsilon). This gives a better rate than what could be achieved using previous techniques. We highlight a connection to linear seeded extractors for bit-fixing sources. In particular we show that obtaining such an extractor with seed length O(log n) can lead to improved parameters for 2-write WOM codes. We then give an application of existing constructions of extractors to the problem of designing encoding schemes for memory with defects.Comment: 19 page

    Programmable image associative memory using an optical disk and a photorefractive crystal

    Get PDF
    The optical disk is a computer-addressable binary storage medium with very high capacity. More than 10^10 bits of information can be recorded on a 12-cm-diameter optical disk. The natural two-dimensional format of the data recorded on an optical disk makes this medium particularly attractive for the storage of images and holograms, while parallel access provides a convenient mechanism through which such data may be retrieved. In this paper we discuss a closed-loop optical associative memory based on the optical disk. This system incorporates image correlation, using photorefractive media to compute the best association in a shift-invariant fashion. When presented with a partial or noisy version of one of the images stored on the optical disk, the optical system evolves to a stable state in which those stored images that best match the input are temporally locked in the loop

    Tagged repair techniques for defect tolerance in hybrid nano/CMOS architecture

    No full text
    We propose two new repair techniques for hybrid nano/CMOS computing architecture with lookup table based Boolean logic. Our proposed techniques use tagging mechanism to provide high level of defect tolerance and we present theoretical equations to predict the repair capability including an estimate of the repair cost. The repair techniques are efficient in utilization of spare units and capable of targeting upto 20% defect rates, which is higher than recently reported repair techniques

    Does OO sync with the way we think?

    Get PDF
    Given that corrective-maintenance costs already dominate the software life cycle and look set to increase significantly, reliability in the form of reducing such costs should be the most important software improvement goal. Yet the results are not promising when we review recent corrective-maintenance data for big systems in general and for OO in particular-possibly because of mismatches between the OO paradigm and how we think

    System Dynamics Modelling of the Processes Involving the Maintenance of the Naive T Cell Repertoire

    Get PDF
    The study of immune system aging, i.e. immunosenescence, is a relatively new research topic. It deals with understanding the processes of immunodegradation that indicate signs of functionality loss possibly leading to death. Even though it is not possible to prevent immunosenescence, there is great benefit in comprehending its causes, which may help to reverse some of the damage done and thus improve life expectancy. One of the main factors influencing the process of immunosenescence is the number and phenotypical variety of naive T cells in an individual. This work presents a review of immunosenescence, proposes system dynamics modelling of the processes involving the maintenance of the naive T cell repertoire and presents some preliminary results.Comment: 6 pages, 2 figures, 1 table, 9th Annual Workshop on Computational Intelligence (UKCI 2009), Nottingham, U

    Coding scheme for 3D vertical flash memory

    Full text link
    Recently introduced 3D vertical flash memory is expected to be a disruptive technology since it overcomes scaling challenges of conventional 2D planar flash memory by stacking up cells in the vertical direction. However, 3D vertical flash memory suffers from a new problem known as fast detrapping, which is a rapid charge loss problem. In this paper, we propose a scheme to compensate the effect of fast detrapping by intentional inter-cell interference (ICI). In order to properly control the intentional ICI, our scheme relies on a coding technique that incorporates the side information of fast detrapping during the encoding stage. This technique is closely connected to the well-known problem of coding in a memory with defective cells. Numerical results show that the proposed scheme can effectively address the problem of fast detrapping.Comment: 7 pages, 9 figures. accepted to ICC 2015. arXiv admin note: text overlap with arXiv:1410.177
    corecore