11,997 research outputs found

    Power Delivery Network Impedance Profile and Voltage Droop Optimization

    Get PDF
    The design process of power delivery networks (PDN) in modern computer platforms is becoming more relevant and complex due to its relationship with high-frequency effects on signal integrity. When circuits start operating, the changing current flowing through the PDN produces fluctuations creating voltage noise. Unsuccessful noise control can compromise data integrity. A suitable PDN design approach is the use of decoupling capacitors to lower the impedance profile and mitigate current surges, ensuring a small variation in the power supply voltage under significant transient current loads. An optimization approach to determine the number of decoupling capacitors in a PDN is presented in this paper, aiming at decreasing the amount of decoupling capacitors without violating the PDN design specifications, looking at both the impedance profile in the frequency domain and the resulting voltage droop in the transient time-domain.ITESO, A.C

    Frequency- and Time-Domain Yield Optimization of a Power Delivery Network Subject to Large Decoupling Capacitor Tolerances

    Get PDF
    Sub-optimal design of power delivery networks (PDN) may cause performance deterioration and severe functional failures on high-speed computer platforms. Voltage regulators (VR) distribute controlled voltage in the PDN to the active devices, providing a steady power supply at a desired DC voltage level with an acceptable noise level or ripple. Unacceptable voltage drops can be caused by transient switching currents at the devices. Many decoupling capacitors are commonly used to lower the PDN impedance profile in order to reduce power supply noise and to supply fast transient current to switching devices. However, commercially available decoupling capacitors typically present large manufacturing variability. In this paper, we first propose an optimization methodology that gradually finds the best compensation parameter values of a buck converter VR to meet suitable stability criteria. Simultaneously, the number of parallel decoupling capacitors in the PDN is minimized while meeting a frequency-domain impedance profile specification and a time-domain minimum voltage droop requirement under nominal parameter values. Finally, a statistical analysis, yield estimation, and yield optimization of the nominally optimized PDN subject to large decoupling capacitor tolerances is presented. We consider the impedance profile, transient voltage droop, and voltage regulator stability as the responses of interest for yield calculation.ITESO, A.C

    Optimizing a buck voltage regulator and the number of decoupling capacitors for a PDN application

    Get PDF
    An optimization methodology to determine the best values of the compensation elements of a buck voltage regulator (VR) as well as the optimal number of decoupling capacitors in a power delivery network (PDN) application is proposed. A state average equivalent circuit model of the buck converter is employed. The proposed optimization methodology gradually finds the best compensation parameter values of a buck converter VR to meet some stability criteria in a PDN application. Additionally, the number of parallel decoupling capacitors in the PDN is minimized to simultaneously meet a frequency-domain impedance profile specification and a time-domain voltage droop requirement.ITESO, A.C

    A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays

    Get PDF
    We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x)

    Robust H8 design for resonant control in a CVCF inverter application over load uncertainties

    Get PDF
    CVCF (constant voltage, constant frequency) inverters are electronic devices used to supply AC loads from DC storage elements such as batteries or photovoltaic cells. These devices are used to feed different kinds of loads; this uncertainty requires that the controller fulfills robust stability conditions while keeping required performance. To address this, a robust H8 design is proposed based on resonant control to track a pure sinusoidal voltage signal and to reject the most common harmonic signals in a wide range of loads. The design is based on the definition of performance bounds in error signal and weighting functions for covering most uncertainty ranges in loads. Experimentally, the H8 controller achieves high-quality output voltage signal with a total harmonic distortion less than 2%Peer ReviewedPostprint (published version

    Via transition modeling and charge replenishment of the power delivery network in multilayer PCBs

    Get PDF
    In the first article of this thesis, the charge delivery in the power distribution network for printed circuit board has been analyzed in the time-domain. Performing all the simulations and analyzing the PDN physics and modeling, I contributed to a better understanding of the time-domain decoupling mechanism. The second paper studies the noise coupling sing a segmentation approach combined with a via-to-antipad capacitance model and a plane-pair cavity model. Building equivalent circuit models as well as analyzing design strategies, I contributed to a new approach for the PDN analysis in multilayer PCBs. The third article discusses how to estimate the amount of current needed for large ICs and how to evaluate the amount of noise voltage due to this current draw. After accurate discussion of the design strategies, I modeled and simulated the free evolution of a charged PCB with and without decoupling capacitors. The depletion of charges stored between the power buses in time and frequency-domain has been investigated as a function of the plane thickness, SMT decoupling closeness in the fourth paper. With my contribution, the time and frequency-domain in the PDN have been related using circuit approach. In the fifth paper, I analyzed a 26-layer printed circuit board performing milling, measurements and building circuit models. It is the first time that the segmentation approach has been used for differential geometry. In addition, Debye materials have been implemented in the cavity model --Abstract, page iv

    EMI characterization for power supplies and machine learning based modeling in EMC/SI

    Get PDF
    Signal integrity (SI) and electromagnetic interference (EMI) are essential for consumer electronics and high-speed server applications. It is necessary to do EMI and SI modeling at the design stage. In this research, several modeling approaches for EMI and SI problems are proposed. By using measurement-based modeling method, the mechanism of conducted emissions (CE) on ac to dc power supplies in an LED TV is analyzed. A system-level transient simulation model is built to predict the conducted emission (CE). To characterize the equivalent dipole moment sources in RFI and EMI problems, a dipole source reconstruction method based on machine learning techniques is proposed. The picture of the electromagnetic field is fed to the convolutional neural network, and the CNN performs a multi-label classification to determine all types of dominant dipole moments. The CNN also generates a class activation map, which indicates the locations of each type of present dipole moment. By using the integer programming method, a PCB stack-up design method is proposed. In high-speed PCB designs, a design with 30 layers or more is not uncommon and there are many logical design constraints that need to be considered. The constraints are converted to mathematical inequalities using the integer programming technique. Then an integer program solver is called to get all possible combinations. The number of possible combinations gets large as the number of layers increases, and the proposed method is much more efficient than brute-force searching. After a nominal design is picked, a searching algorithm based on integer programming is further used to find corner cases by considering the manufacturing variations --Abstract, page iii

    Voltage-to-Time Converter for High-Speed Time-Based Analog-to-Digital Converters

    Get PDF
    In modern complementary metal oxide semiconductor (CMOS) technologies, the supply voltage scales faster than the threshold voltage (Vth) of the transistors in successive smaller nodes. Moreover, the intrinsic gain of the transistors diminishes as well. Consequently, these issues increase the difficulty of designing higher speed and larger resolution analog-to-digital converters (ADCs) employing voltage-domain ADC architectures. Nevertheless, smaller transistor dimensions in state-of-the-art CMOS technologies leads to reduced capacitance, resulting in lower gate delays. Therefore, it becomes beneficial to first convert an input voltage to a 'time signal' using a voltage-to-time converter (VTC), instead of directly converting it into a digital output. This 'time-signal' could then be converted to a digital output through a time-to-digital converter (TDC) for complete analog-to-digital conversion. However, the overall performance of such an ADC will still be limited to the performance level of the voltage-to-time conversion process. Hence, this thesis presents the design of a linear VTC for a high-speed time-based ADC in 28 nm CMOS process. The proposed VTC consists of a sample-and-hold (S/H) circuit, a ramp generator and a comparator to perform the conversion of the input signal from the voltage to the time domain. Larger linearity is attained by integrating a constant current (with high output impedance) over a capacitor, generating a linear ramp. The VTC operates at 256 MSPS consuming 1.3 mW from 1 V supply with a full-scale 1 V pk-pk differential input signal, while achieving a time-domain output signal with a spurious-free-dynamic-range (SFDR) of 77 dB and a signal-to-noise-and-distortion ratio (SNDR) of 56 dB at close to Nyquist frequency (f = 126.5 MHz). The proposed VTC attains an output range of 2.7 ns, which is the highest linear output range for a VTC at this speed, published to date

    A 3 Gb/s optical detector in standard CMOS for 850 nm optical communication

    Get PDF
    This paper presents a monolithic optical detector, consisting of an integrated photodiode and a preamplifier in a standard 0.18-/spl mu/m CMOS technology. A data rate of 3 Gb/s at BER <10/sup -11/ was achieved for /spl lambda/=850 nm with 25-/spl mu/W peak-peak optical power. This data rate is more than four times than that of current state-of-the-art optical detectors in standard CMOS reported so far. High-speed operation is achieved without reducing circuit responsivity by using an inherently robust analog equalizer that compensates (in gain and phase) for the photodiode roll-off over more than three decades. The presented solution is applicable to various photodiode structures, wavelengths, and CMOS generations
    • …
    corecore