114 research outputs found

    On the Block Error Rate Performance of Spatially Coupled LDPC Codes for Streaming Applications

    Get PDF
    In this paper, we study the block error rate (BLER) performance of spatially coupled low-density parity-check (SC- LDPC) codes using a sliding window decoder suited for streaming applications. Previous studies of SC-LDPC have focused on the bit error rate (BER) performance or the frame error rate (FER) performance over the entire length of the code. Here, we consider protograph-based constructions of SC-LDPC codes in which a window decoder continuously outputs blocks in a streaming fashion, and we examine the BLER associated with these blocks.We begin by examining the effect of protograph design on the streaming BLER by varying the block size and the coupling width in such a way that the overall constraint length of the SC-LDPC code remains constant. Next, we investigate the BLER scaling behavior with block size and coupling width. Lastly, we consider the effect of employing an outer code to protect blocks, so that small numbers of residual errors can be corrected by the outer code. Simulation results for the additive white Gaussian noise channel (AWGNC) are included and comparisons are made to LDPC block codes (LDPC-BCs)

    Error Propagation Mitigation in Sliding Window Decoding of Braided Convolutional Codes

    Full text link
    We investigate error propagation in sliding window decoding of braided convolutional codes (BCCs). Previous studies of BCCs have focused on iterative decoding thresholds, minimum distance properties, and their bit error rate (BER) performance at small to moderate frame length. Here, we consider a sliding window decoder in the context of large frame length or one that continuously outputs blocks in a streaming fashion. In this case, decoder error propagation, due to the feedback inherent in BCCs, can be a serious problem.In order to mitigate the effects of error propagation, we propose several schemes: a \emph{window extension algorithm} where the decoder window size can be extended adaptively, a resynchronization mechanism where we reset the encoder to the initial state, and a retransmission strategy where erroneously decoded blocks are retransmitted. In addition, we introduce a soft BER stopping rule to reduce computational complexity, and the tradeoff between performance and complexity is examined. Simulation results show that, using the proposed window extension algorithm, resynchronization mechanism, and retransmission strategy, the BER performance of BCCs can be improved by up to four orders of magnitude in the signal-to-noise ratio operating range of interest, and in addition the soft BER stopping rule can be employed to reduce computational complexity.Comment: arXiv admin note: text overlap with arXiv:1801.0323

    On Doped SC-LDPC Codes for Streaming

    Get PDF
    In streaming applications, doping improves the performance of spatially-coupled low-density parity-check (SC-LDPC) codes by creating reduced-degree check nodes in the coupled chain. We formulate a scaling law to predict the bit and block error rate of periodically-doped semi-infinite SC-LDPC code ensembles streamed over the binary erasure channel under sliding window decoding for a given finite component block length. The scaling law assumes that with some probability doping is equivalent to full termination and triggers two decoding waves; otherwise, decoding performs as if the coupled chain had not been doped at all. We approximate that probability and use the derived scaling laws to predict the error rates of SC-LDPC code ensembles in the presence of doping. The proposed scaling law provides accurate error rate predictions. We further use it to show that in streaming applications periodic doping can yield higher rates than periodic full termination for the same error-correcting performance

    Finite-Length Scaling Laws for Spatially-Coupled LDPC Codes

    Get PDF
    This thesis concerns predicting the finite-length error-correcting performance of spatially-coupled low-density parity-check (SC-LDPC) code ensembles over the binary erasure channel. SC-LDPC codes are a very powerful class of codes; their use in practical communication systems, however, requires the system designer to specify a considerable number of code and decoder parameters, all of which affect both the code’s error-correcting capability and the system’s memory, energy, and latency requirements. Navigating the space of the associated trade-offs is challenging. The aim of the finite-length scaling laws proposed in this thesis is to facilitate code and decoder parameter optimization by providing a way to predict the code’s error-rate performance without resorting to Monte-Carlo simulations for each combination of code/decoder and channel parameters.First, we tackle the problem of predicting the frame, bit, and block error rate of SC-LDPC code ensembles over the binary erasure channel under both belief propagation (BP) decoding and sliding window decoding when the maximum number of decoding iterations is unlimited. The scaling laws we develop provide very accurate predictions of the error rates.Second, we derive a scaling law to accurately predict the bit and block error rate of SC-LDPC code ensembles with doping, a technique relevant for streaming applications for limiting the inherent rate loss of SC-LDPC codes. We then use the derived scaling law for code parameter optimization and show that doping can offer a way to achieve better transmission rates for the same target bit error rate than is possible without doping.Last, we address the most challenging (and most practically relevant) case where the maximum number of decoding iterations is limited, both for BP and sliding window decoding. The resulting predictions are again very accurate.Together, these contributions make finite-length SC-LDPC code and decoder parameter optimization via finite-length scaling laws feasible for the design of practical communication systems

    Continuous Transmission of Spatially Coupled LDPC Code Chains

    Get PDF
    We propose a novel encoding/transmission scheme called continuous chain (CC) transmission that is able to improve the finite-length performance of a system using spatially coupled low-density parity-check (SC-LDPC) codes. In CC transmission, instead of transmitting a sequence of independent code words from a terminated SC-LDPC code chain, we connect multiple chains in a layered format, where encoding, transmission, and decoding are performed in a continuous fashion. The connections between chains are created at specific points, chosen to improve the finite-length performance of the code structure under iterative decoding. We describe the design of CC schemes for different SC-LDPC code ensembles constructed from protographs: a (J,K) -regular SC-LDPC code chain, a spatially coupled repeat-accumulate (SC-RA) code, and a spatially coupled accumulate-repeat-jagged-accumulate (SC-ARJA) code. In all cases, significant performance improvements are reported and it is shown that using CC transmission only requires a small increase in decoding complexity and decoding delay with respect to a system employing a single SC-LDPC code chain for transmission.This material is based upon work supported in part by the National Science Foundation under Grant Nos. CCF-1161754 and CCSS-1710920, in part by NSERC Canada, and in part by the Spanish Ministry of Economy and Competitiveness and the Spanish National Research Agency under grants TEC2016-78434-C3-3-R (AEI/FEDER, EU) and Juan de la Cierva Fellowship IJCI-2014-19150

    Combating Error Propagation in Window Decoding of Braided Convolutional Codes

    Full text link
    In this paper, we study sliding window decoding of braided convolutional codes (BCCs) in the context of a streaming application, where decoder error propagation can be a serious problem. A window extension algorithm and a resynchronization mechanism are introduced to mitigate the effect of error propagation. In addition, we introduce a soft bit-error-rate stopping rule to reduce computational complexity, and the tradeoff between performance and complexity is examined. Simulation results show that, using the proposed window extension algorithm and resynchronization mechanism, the error performance of BCCs can be improved by up to three orders of magnitude with reduced computational complexity.Comment: 6 pages, 10 figures, submitted for IEEE ISIT201

    Finite-Length Scaling of SC-LDPC Codes With a Limited Number of Decoding Iterations

    Get PDF
    We propose four finite-length scaling laws to predict the frame error rate (FER) performance of spatially-coupled low-density parity-check codes under full belief propagation (BP) decoding with a limit on the number of decoding iterations and a scaling law for sliding window decoding, also with limited iterations. The laws for full BP decoding provide a choice between accuracy and computational complexity; a good balance between them is achieved by the law that models the number of decoded bits after a certain number of BP iterations by a time-integrated Ornstein-Uhlenbeck process. This framework is developed further to model sliding window decoding as a race between the integrated Ornstein-Uhlenbeck process and an absorbing barrier that corresponds to the left boundary of the sliding window. The proposed scaling laws yield accurate FER predictions

    D11.2 Consolidated results on the performance limits of wireless communications

    Get PDF
    Deliverable D11.2 del projecte europeu NEWCOM#The report presents the Intermediate Results of N# JRAs on Performance Limits of Wireless Communications and highlights the fundamental issues that have been investigated by the WP1.1. The report illustrates the Joint Research Activities (JRAs) already identified during the first year of the project which are currently ongoing. For each activity there is a description, an illustration of the adherence and relevance with the identified fundamental open issues, a short presentation of the preliminary results, and a roadmap for the joint research work in the next year. Appendices for each JRA give technical details on the scientific activity in each JRA.Peer ReviewedPreprin
    • …
    corecore