115 research outputs found

    Nonlinear Balanced Truncation: Part 1 -- Computing Energy Functions

    Full text link
    Nonlinear balanced truncation is a model order reduction technique that reduces the dimension of nonlinear systems in a manner that accounts for either open- or closed-loop observability and controllability aspects of the system. Two computational challenges have so far prevented its deployment on large-scale systems: (a) the energy functions required for characterization of controllability and observability are solutions of high-dimensional Hamilton-Jacobi-(Bellman) equations, and (b) efficient model reduction and subsequent reduced-order model (ROM) simulation on the resulting nonlinear balanced manifolds. This work proposes a unifying and scalable approach to the challenge (a) by considering a Taylor series-based approach to solve a class of parametrized Hamilton-Jacobi-Bellman equations that are at the core of the balancing approach. The value of a formulation parameter provides either open-loop balancing or a variety of closed-loop balancing options. To solve for coefficients of the Taylor-series approximation to the energy functions, the presented method derives a linear tensor structure and heavily utilizes this to solve structured linear systems with billions of unknowns. The strength and scalability of the algorithm is demonstrated on two semi-discretized partial differential equations, namely the Burgers equation and the Kuramoto-Sivashinsky equation.Comment: 16 pages, 5 figure

    A gramian-based approach to model reduction for uncertain systems

    Full text link
    The technical note considers a problem of model reduction for a class of uncertain systems with structured norm bounded uncertainty. The technical note introduces controllability and observability Gramians in terms of certain parameterized algebraic Riccati inequalities. Based on these Gramians, three model reduction approaches are investigated for the underlying uncertain systems. © 2010 IEEE

    Model reduction of unstable systems based on balanced truncation algorithm

    Get PDF
    Model reduction of a system is an approximation of a higher-order system to a lower-order system while the dynamic behavior of the system is almost unchanged. In this paper, we will discuss model order reduction (MOR) strategies for unstable systems, in which the method based on the balanced truncation algorithm will be focused on. Since each MOR algorithm has its strengths and weakness, practical applications should be suitable for each specific requirement. Simulation results will demonstrate the correctness of the algorithms

    Control and Estimation Oriented Model Order Reduction for Linear and Nonlinear Systems

    Full text link
    Optimization based controls are advantageous in meeting stringent performance requirements and accommodating constraints. Although computers are becoming more powerful, solving optimization problems in real-time remains an obstacle because of associated computational complexity. Research efforts to address real-time optimization with limited computational power have intensified over the last decade, and one direction that has shown some success is model order reduction. This dissertation contains a collection of results relating to open- and closed-loop reduction techniques for large scale unconstrained linear descriptor systems, constrained linear systems, and nonlinear systems. For unconstrained linear descriptor systems, this dissertation develops novel gramian and Riccati solution approximation techniques. The gramian approximation is used for an open-loop reduction technique following that of balanced truncation proposed by (Moore, 1981) for ordinary linear systems and (Stykel, 2004) for linear descriptor systems. The Riccati solution is used to generalize the Linear Quadratic Gaussian balanced truncation (LQGBT) of (Verriest, 1981) and (Jonckheere and Silverman, 1983). These are applied to an electric machine model to reduce the number of states from >>100000 to 8 while improving accuracy over the state-of-the-art modal truncation of (Zhou, 2015) for the purpose of condition monitoring. Furthermore, a link between unconstrained model predictive control (MPC) with a terminal penalty and LQG of a linear system is noted, suggesting an LQGBT reduced model as a natural model for reduced MPC design. The efficacy of such a reduced controller is demonstrated by the real-time control of a diesel airpath. Model reduction generally introduces modeling errors, and controlling a constrained plant subject to modeling errors falls squarely into robust control. A standard assumption of robust control is that inputs/states/outputs are constrained by convex sets, and these sets are ``tightened'' for robust constraint satisfaction. However, robust control is often overly conservative, and resulting control strategies cannot take advantage of the true admissible sets. A new reduction problem is proposed that considers the reduced order model accuracy and constraint conservativeness. A constant tube methodology for reduced order constrained MPC is presented, and the proposed reduced order model is found to decrease the constraint conservativeness of the reduced order MPC law compared to reduced order models obtained by gramian and LQG reductions. For nonlinear systems, a reformulation of the empirical gramians of (Lall et al., 1999) and (Hahn et al., 2003) into simpler, yet more general forms is provided. The modified definitions are used in the balanced truncation of a nonlinear diesel airpath model, and the reduced order model is used to design a reduced MPC law for tracking control. Further exploiting the link between the gramian and Riccati solution for linear systems, the new empirical gramian formulation is extended to obtain empirical Riccati covariance matrices used for closed-loop model order reduction of a nonlinear system. Balanced truncation using the empirical Riccati covariance matrices is demonstrated to result in a closer-to-optimal nonlinear compensator than the previous balanced truncation techniques discussed in the dissertation.PHDNaval Architecture & Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140839/1/riboch_1.pd

    Finite worldlength effects in fixed-point implementations of linear systems

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 173-194).by Vinay Mohta.M.Eng

    Multivariable H∞H_\infty control design toolbox : user manual

    Get PDF
    • …
    corecore