14,948 research outputs found

    An Extended Kalman Filter for Data-enabled Predictive Control

    Full text link
    The literature dealing with data-driven analysis and control problems has significantly grown in the recent years. Most of the recent literature deals with linear time-invariant systems in which the uncertainty (if any) is assumed to be deterministic and bounded; relatively little attention has been devoted to stochastic linear time-invariant systems. As a first step in this direction, we propose to equip the recently introduced Data-enabled Predictive Control algorithm with a data-based Extended Kalman Filter to make use of additional available input-output data for reducing the effect of noise, without increasing the computational load of the optimization procedure

    Ergodic Randomized Algorithms and Dynamics over Networks

    Full text link
    Algorithms and dynamics over networks often involve randomization, and randomization may result in oscillating dynamics which fail to converge in a deterministic sense. In this paper, we observe this undesired feature in three applications, in which the dynamics is the randomized asynchronous counterpart of a well-behaved synchronous one. These three applications are network localization, PageRank computation, and opinion dynamics. Motivated by their formal similarity, we show the following general fact, under the assumptions of independence across time and linearities of the updates: if the expected dynamics is stable and converges to the same limit of the original synchronous dynamics, then the oscillations are ergodic and the desired limit can be locally recovered via time-averaging.Comment: 11 pages; submitted for publication. revised version with fixed technical flaw and updated reference

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    A convergent relaxation of the Douglas-Rachford algorithm

    Full text link
    This paper proposes an algorithm for solving structured optimization problems, which covers both the backward-backward and the Douglas-Rachford algorithms as special cases, and analyzes its convergence. The set of fixed points of the algorithm is characterized in several cases. Convergence criteria of the algorithm in terms of general fixed point operators are established. When applying to nonconvex feasibility including the inconsistent case, we prove local linear convergence results under mild assumptions on regularity of individual sets and of the collection of sets which need not intersect. In this special case, we refine known linear convergence criteria for the Douglas-Rachford algorithm (DR). As a consequence, for feasibility with one of the sets being affine, we establish criteria for linear and sublinear convergence of convex combinations of the alternating projection and the DR methods. These results seem to be new. We also demonstrate the seemingly improved numerical performance of this algorithm compared to the RAAR algorithm for both consistent and inconsistent sparse feasibility problems

    Quantum systems and control 1

    No full text
    http://www-direction.inria.fr/international/arima/009/00920.htmlInternational audienceThis paper describes several methods used by physicists for manipulations of quantum states. For each method, we explain the model, the various time-scales, the performed approximations and we propose an interpretation in terms of control theory. These various interpretations underlie open questions on controllability, feedback and estimations. For 2-level systems we consider: the Rabi oscillations in connection with averaging; the Bloch-Siegert corrections associated to the second order terms; controllability versus parametric robustness of open-loop control and an interesting controllability problem in infinite dimension with continuous spectra. For 3-level systems we consider: Raman pulses and the second order terms. For spin/spring systems we consider: composite systems made of 2-level sub-systems coupled to quantized harmonic oscillators; multi-frequency averaging in infinite dimension; controllability of 1D partial differential equation of Shrödinger type and affine versus the control; motion planning for quantum gates. For open quantum systems subject to decoherence with continuous measures we consider: quantum trajectories and jump processes for a 2-level system; Lindblad-Kossakovsky equation and their controllability.Ce papier décrit plusieurs méthodes utilisées par les physiciens pour la manipulation d’états quantiques. Pour chaque méthode, nous expliquons la modélisation, les diverses échelles de temps, les approximations faites et nous proposons une interprétation en termes de contrôle. Ces diverses interprétations servent de base à la formulation de questions ouvertes sur la commandabilité et aussi sur le feedback et l’estimation, renouvelant un peu certaines questions de base en théorie des systèmes non-linéaires. Pour les systèmes à deux niveaux, dits aussi de spin 1/2, il s’agit: des oscillations de Rabi et d’une approximation au premier ordre de la théorie des perturbations (transition à un photon); des corrections de Bloch-Siegert et d’approximation au second ordre; de commandabilité et de robustesse paramétrique pour des contrôles en boucle ouverte, robustesse liée à des questions largement ouvertes sur la commandabilité en dimension infinie où le spectre est continu. Pour les systèmes à trois niveaux, il s’agit: de pulses Raman; d’approximations au second ordre. Pour les systèmes spin/ressort, il s’agit: des systèmes composés de sous-systèmes à deux niveaux couplés à des oscillateurs harmoniques quantifiés; de théorie des perturbations à plusieurs fréquences en dimension infinie; de commandabilité d’équations aux dérivées partielles de type Schrödinger sur R et affine en contrôle; de planification de trajectoires pour la synthèse portes logiques quantiques. Pour les systèmes ouverts soumis à la décohérence avec des mesures en continu, il s’agit: de trajectoires quantiques de Monte-Carlo et de processus à sauts sur un systèmes à deux niveaux; des équations de Lindblad-Kossakovsky avec leur commandabilité

    Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder

    Full text link
    We have studied how 2- and 3- dimensional systems made up of particles interacting with finite range, repulsive potentials jam (i.e., develop a yield stress in a disordered state) at zero temperature and applied stress. For each configuration, there is a unique jamming threshold, Ï•c\phi_c, at which particles can no longer avoid each other and the bulk and shear moduli simultaneously become non-zero. The distribution of Ï•c\phi_c values becomes narrower as the system size increases, so that essentially all configurations jam at the same Ï•\phi in the thermodynamic limit. This packing fraction corresponds to the previously measured value for random close-packing. In fact, our results provide a well-defined meaning for "random close-packing" in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold, Point J, occurring at zero temperature and applied stress and at the random close-packing density, has properties reminiscent of an ordinary critical point. As Point J is approached from higher packing fractions, power-law scaling is found for many quantities. Moreover, near Point J, certain quantities no longer self-average, suggesting the existence of a length scale that diverges at J. However, Point J also differs from an ordinary critical point: the scaling exponents do not depend on dimension but do depend on the interparticle potential. Finally, as Point J is approached from high packing fractions, the density of vibrational states develops a large excess of low-frequency modes. All of these results suggest that Point J may control behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure
    • …
    corecore