486 research outputs found

    Autonomous take-off and landing of a tethered aircraft: a simulation study

    Full text link
    The problem of autonomous launch and landing of a tethered rigid aircraft for airborne wind energy generation is addressed. The system operates with ground-based power conversion and pumping cycles, where the tether is repeatedly reeled in and out of a winch installed on the ground and linked to an electric motor/generator. In order to accelerate the aircraft to take-off speed, the ground station is augmented with a linear motion system composed by a slide translating on rails and controlled by a second motor. An onboard propeller is used to sustain the forward velocity during the ascend of the aircraft. During landing, a slight tension on the line is kept, while the onboard control surfaces are used to align the aircraft with the rails and to land again on them. A model-based, decentralized control approach is proposed, capable to carry out a full cycle of launch, low-tension flight, and landing again on the rails. The derived controller is tested via numerical simulations with a realistic dynamical model of the system, in presence of different wind speeds and turbulence, and its performance in terms of landing accuracy is assessed. This study is part of a project aimed to experimentally verify the launch and landing approach on a small-scale prototype.Comment: This is the longer version of a paper submitted to the 2016 American Control Conference 2016, with more details on the simulation parameter

    Airborne Wind Energy Systems: A review of the technologies

    Get PDF
    Among novel technologies for producing electricity from renewable resources, a new class of wind energy converters has been conceived under the name of Airborne Wind Energy Systems (AWESs). This new generation of systems employs flying tethered wings or aircraft in order to reach winds blowing at atmosphere layers that are inaccessible by traditional wind turbines. Research on AWESs started in the mid seventies, with a rapid acceleration in the last decade. A number of systems based on radically different concepts have been analyzed and tested. Several prototypes have been developed all over the world and the results from early experiments are becoming available. This paper provides a review of the different technologies that have been conceived to harvest the energy of high-altitude winds, specifically including prototypes developed by universities and companies. A classification of such systems is proposed on the basis of their general layout and architecture. The focus is set on the hardware architecture of systems that have been demonstrated and tested in real scenarios. Promising solutions that are likely to be implemented in the close future are also considered

    Technical evaluation and modelling of a cross wind kite based on Loyd's model

    Get PDF
    Tese de mestrado integrado, Engenharia da Energia e do Ambiente, Universidade de Lisboa, Faculdade de Ciências, 2018Ao longo do seu desenvolvimento, o ser humano sempre necessitou de recorrer a fontes de energia para satisfazer as suas necessidades básicas, quer na forma de calor ou trabalho. As fontes de energia renováveis que tal como o nome indica, são fontes inesgotáveis e sem qualquer tipo de emissões poluentes para o ambiente, surgiram como uma alternativa às fontes de energia de origem fóssil (petróleo, gás natural e carvão) e nuclear. Alguns exemplos destas fontes de energia renovável são: vento, sol, biomassa, ondas e marés, hídrica e geotermia. A energia que potencialmente pode ser gerada pelo vento seria suficiente para suprir toda a procura energética no mundo (entre 81-118 PWh/ano). No entanto, este potencial nem sempre é aproveitado devido a certas restrições, como a localização do parque eólico ou a limitação da altura das turbinas. As tecnologias para geração de energia eólica a altas altitudes, com cotas superiores a 100 metros, pretendem minimizar parte desses problemas, uma vez que a estas alturas o vento sopra com maior velocidade. A principal preocupação é entender se estas tecnologias também podem competir com as turbinas eólicas convencionais em termos de produção de energia, com melhor relação qualidade-custo. Este tipo de tecnologia tem o potencial de reduzir o custo de investimento, porque tem uma estrutura menos complexa do que uma turbina convencional e aumenta a energia produzida, acedendo a lugares de maior potencial eólico, o que resulta num menor custo unitário de energia. No entanto, é preciso ter em conta que o preço por kilograma do material tipicamente utilizado nestas tecnologias, a fibra de carbono, é bastante superior ao preço do aço utilizado na construção das estruturas das turbinas eólicas. No protótipo criado pela Makani, alega-se um custo unitário de energia de 0.026 €/kWh, um valor consideravelmente menor quando comparado com o de uma turbina convencional de 2.5 MW que ronda os 0.078 €/kWh. A principal objetivo desta dissertação é avaliar o potencial energético que é possível atingir com o protótipo “M600”, desenhado pela Makani. Esta tecnologia tem como base um planador com 26 metros de envergadura com oito pequenos rotores dispostos ao longo das suas asas. Estes rotores ao serem atravessados pelo vento, produzem energia sendo esta transmitida para uma estação no solo através de um cabo condutor elétrico com cerca de 400 metros. A fibra de carbono que constitui o corpo do planador concede lhe uma alta resistência à tração, e um baixo peso que favorece as suas manobras durante o voo. O cabo condutor elétrico, revestido também por fibra de carbono, apresenta no seu interior alumínio, um material com uma baixa impedância elétrica, sendo por isso um bom condutor elétrico, garantindo que as perdas de energia na sua transmissão são mínimas. O planador arranca do seu ponto inicial, com o plano das asas em posição vertical e com os rotores a trabalharem como propulsores para fazê-lo levantar voo, consumindo energia elétrica. O sistema ascende, e quando o cabo está completamente estendido, este entra no modo de voo livre, descrevendo uma trajetória circular restringida pelo comprimento do cabo. Neste modo de voo, os rotores funcionam como geradores que convertem o poder do vento em energia elétrica. Quando o vento não é suficiente para o dispositivo se manter no ar, ou por qualquer outro motivo este tem de aterrar, o sistema muda novamente o seu modo de voo, para poder aterrar no solo. Durante as fases de arranque e aterragem do sistema, a energia consumida é uma pequena fração da energia que é produzida no modo de voo livre. Para simular a operação e o comportamento deste equipamento, foi implementado um modelo numérico, proposto por Miles L. Loyd no seu artigo de 1980 "Crosswind Kite Power", com o auxílio do programa informático Simulink. No modelo proposto por Loyd, os seus cálculos foram realizados tendo como base um avião militar com 68 metros de envergadura e cerca de 230 toneladas. Numa primeira aproximação, a simulação em Simulink foi testada nas mesmas condições que as do modelo criado por Loyd, até os resultados da simulação se aproximarem dos obtidos por ele mesmo. Após isto acontecer, o modelo foi testado tendo com os valores do protótipo da Makani, o “M600”, para se poder estudar o seu comportamento. Com esta simulação foi possível concluir que o “M600” descreve um trajeto circular com um tamanho da órbita de 0.4 radianos, a uma velocidade de aproximadamente 98.7 m/s, variando entre altitudes de 75 até 363 metros. Foi criado também um modelo do vento baseado numa Lei de Potência com a velocidade deste a oscilar entre 8.66 e 10.86 m/s. Esta simulação permitiu ainda concluir que este protótipo teria uma potência média à saída de 0.598 MW aquando da realização de três ciclos completos de rotação, valor bastante próximo da potência nominal do “M600”: 0.6 MW. Verificou-se ainda que em alguns momentos a potência registada à saída excedia a potência nominal, pelo que os geradores poderão ter de ser sobredimensionados para aceitar estes valores, uma vez que de outra forma estariam a desperdiçar energia. Alternativamente, este fenómeno pode ser controlado com arrasto adicional provocado por flaps nas asas ou pelos próprios rotores, que levam a uma redução da potência média por ciclo. Este processo deve ser assegurado por controladores abordo do sistema. A tensão máxima criada no cabo pelo planador foi de aproximadamente 486 kN, sendo este capaz de suportar estas tensões. Na realização desta dissertação não foi possível prever de forma concreta o comportamento do controlador do movimento do planador recorrendo a um PID (controlador Proporcional Integral Derivativo). Apesar desta hipótese ter sido testada, os seus resultados foram inconclusivos, com o planador a descrever uma trajetória bastante irregular, inclusivamente atravessando o solo com o registo de cotas negativas. Tendo por base o artigo de Loyd, este controlador é definido como a tangente do ângulo de rolamento, que representa a rotação realizada em torno do eixo longitudinal do planador. Para esse fim, foi feita uma aproximação deste ângulo forçando o planador a descrever um movimento circular uniforme a uma velocidade constante, variando este ângulo entre -7 e 47 graus nos pontos de maior e menor cota respetivamente. Nos pontos médios da ascensão e descida, à mesma cota, quando este está perfeitamente perpendicular à direção vento, o ângulo de rolamento foi considerado zero. Após vários testes, a velocidade constante de rotação para o qual os resultados obtidos mais se aproximavam aos obtidos por Loyd, foi a de 5.5 RPM, com menores erros relativos registados. O facto de o planador descrever uma velocidade constante pode trazer algumas incertezas ao modelo, impossibilitando o cálculo de algumas características desta tecnologia como a curva de potência ou o fator de capacidade. No entanto fica em aberto um futuro estudo para poder prever o comportamento de um controlador mais elaborado num eixo com seis graus de liberdade.The potential energy that can be generated by wind should be sufficient to supply all the energy demand in the world (between 81-118 PWh /year). However, this potential is not always harnessed due to certain constraints such as the location of the wind farm and the limitation of turbine heights. The technologies for wind power generation at high altitudes, with heights higher than 100 meters, intend to settle some these problems. The main concern is to understand if these technologies can also compete with the conventional wind turbines in terms of energy production, with better cost-quality relation. This type of technology has the potential to reduce the investment cost, due to a less complex structure than a conventional turbine, and increase the energy produced accessing to higher wind potential places, resulting in a lower levelized cost of energy. For Makani’s prototype, a levelized cost of energy of 0.026 € / kWh is claimed, a considerably lower value when compared to a conventional 2.5 MW turbine that is around 0.078 € / kWh. The main objective for the development of this dissertation is to evaluate the energy potential that can be achieved with the “M600” Makani prototype. This technology is based on a crosswind kite that produces energy through mini rotors placed on-board the kite. This energy is transmitted to a ground station through an electric conductor tether. To simulate the operation and the behaviour of this equipment was implemented with the help of Simulink software, the numerical model proposed by Miles L. Loyd in his article “Crosswind Kite Power”. After this simulation was possible to conclude that this prototype describes a circular path with an orbit size of 0.4 radians, at a velocity of approximately 98.7 m/s, varying between altitudes of 75 and 363 meters. A wind model was also created based on a Power Law, with the wind oscillating between 8.66 and 10.86 m / s. This simulation also led to the conclusion that this prototype would have an average power output of 0.598 MW after three complete cycles of rotation were performed, a value similar to the 0.6 MW of nominal power of the “M600”. The peak tether tension was approximately 486 kN, being able to withstand the proposed stresses. In this dissertation realization wasn’t possible to predict concretely the controller behaviour of the kite movement using a PID, since the results were inconclusive. Based on Loyd’s article, this controller was defined as the role angle’s tangent, so an approximation of this angle was made forcing the kite to describe the desired motion at a constant speed of 5.5 RPM per cycle. This factor can bring some uncertainties to the model and makes it impossible to calculate some characteristics of this technology as the power curve or the capacity factor, however a future study is still open to be able to predict this controller behaviour

    Cascade Control of the Ground Station Module of an Airborne Wind Energy System

    Get PDF
    An airborne wind energy system (AWES) can harvest stronger wind streams at higher altitudes which are not accessible to conventional wind turbines. The operation of AWES requires a controller for the tethered aircraft/kite module (KM), as well as a controller for the ground station module (GSM). The literature regarding the control of AWES mostly focuses on the trajectory tracking of the KM. However, an advanced control of the GSM is also key to the successful operation of an AWES. In this paper we propose a cascaded control strategy for the GSM of an AWES during the traction or power generation phase. The GSM comprises a winch and a three-phase induction machine (IM), which acts as a generator. In the outer control-loop, an integral sliding mode control (SMC) algorithm is designed to keep the winch velocity at the prescribed level. A detailed stability analysis is also presented for the existence of the SMC for the perturbed winch system. The rotor flux-based field oriented control (RFOC) of the IM constitutes the inner control-loop. Due to the sophisticated RFOC, the decoupled and instantaneous control of torque and rotor flux is made possible using decentralized proportional integral (PI) controllers. The unknown states required to design RFOC are estimated using a discrete time Kalman filter (DKF), which is based on the quasi-linear model of the IM. The designed GSM controller is integrated with an already developed KM, and the AWES is simulated using MATLAB and Simulink. The simulation study shows that the GSM control system exhibits appropriate performance even in the presence of the wind gusts, which account for the external disturbance
    corecore