8,536 research outputs found

    Non-asymptotic Upper Bounds for Deletion Correcting Codes

    Full text link
    Explicit non-asymptotic upper bounds on the sizes of multiple-deletion correcting codes are presented. In particular, the largest single-deletion correcting code for qq-ary alphabet and string length nn is shown to be of size at most qnβˆ’q(qβˆ’1)(nβˆ’1)\frac{q^n-q}{(q-1)(n-1)}. An improved bound on the asymptotic rate function is obtained as a corollary. Upper bounds are also derived on sizes of codes for a constrained source that does not necessarily comprise of all strings of a particular length, and this idea is demonstrated by application to sets of run-length limited strings. The problem of finding the largest deletion correcting code is modeled as a matching problem on a hypergraph. This problem is formulated as an integer linear program. The upper bound is obtained by the construction of a feasible point for the dual of the linear programming relaxation of this integer linear program. The non-asymptotic bounds derived imply the known asymptotic bounds of Levenshtein and Tenengolts and improve on known non-asymptotic bounds. Numerical results support the conjecture that in the binary case, the Varshamov-Tenengolts codes are the largest single-deletion correcting codes.Comment: 18 pages, 4 figure

    Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert-Varshamov bound

    Full text link
    It was shown by Massey that linear complementary dual (LCD for short) codes are asymptotically good. In 2004, Sendrier proved that LCD codes meet the asymptotic Gilbert-Varshamov (GV for short) bound. Until now, the GV bound still remains to be the best asymptotical lower bound for LCD codes. In this paper, we show that an algebraic geometry code over a finite field of even characteristic is equivalent to an LCD code and consequently there exists a family of LCD codes that are equivalent to algebraic geometry codes and exceed the asymptotical GV bound
    • …
    corecore