299 research outputs found

    Constructions for orthogonal designs using signed group orthogonal designs

    Full text link
    Craigen introduced and studied signed group Hadamard matrices extensively and eventually provided an asymptotic existence result for Hadamard matrices. Following his lead, Ghaderpour introduced signed group orthogonal designs and showed an asymptotic existence result for orthogonal designs and consequently Hadamard matrices. In this paper, we construct some interesting families of orthogonal designs using signed group orthogonal designs to show the capability of signed group orthogonal designs in generation of different types of orthogonal designs.Comment: To appear in Discrete Mathematics (Elsevier). No figure

    Some Constructions for Amicable Orthogonal Designs

    Full text link
    Hadamard matrices, orthogonal designs and amicable orthogonal designs have a number of applications in coding theory, cryptography, wireless network communication and so on. Product designs were introduced by Robinson in order to construct orthogonal designs especially full orthogonal designs (no zero entries) with maximum number of variables for some orders. He constructed product designs of orders 44, 88 and 1212 and types (1(3);1(3);1),\big(1_{(3)}; 1_{(3)}; 1\big), (1(3);1(3);5)\big(1_{(3)}; 1_{(3)}; 5\big) and (1(3);1(3);9)\big(1_{(3)}; 1_{(3)}; 9\big), respectively. In this paper, we first show that there does not exist any product design of order n≠4n\neq 4, 88, 1212 and type (1(3);1(3);n−3),\big(1_{(3)}; 1_{(3)}; n-3\big), where the notation u(k)u_{(k)} is used to show that uu repeats kk times. Then, following the Holzmann and Kharaghani's methods, we construct some classes of disjoint and some classes of full amicable orthogonal designs, and we obtain an infinite class of full amicable orthogonal designs. Moreover, a full amicable orthogonal design of order 292^9 and type (2(8)6;2(8)6)\big(2^6_{(8)}; 2^6_{(8)}\big) is constructed.Comment: 12 pages, To appear in the Australasian Journal of Combinatoric

    Entanglement-assisted zero-error source-channel coding

    Get PDF
    We study the use of quantum entanglement in the zero-error source-channel coding problem. Here, Alice and Bob are connected by a noisy classical one-way channel, and are given correlated inputs from a random source. Their goal is for Bob to learn Alice's input while using the channel as little as possible. In the zero-error regime, the optimal rates of source codes and channel codes are given by graph parameters known as the Witsenhausen rate and Shannon capacity, respectively. The Lov\'asz theta number, a graph parameter defined by a semidefinite program, gives the best efficiently-computable upper bound on the Shannon capacity and it also upper bounds its entanglement-assisted counterpart. At the same time it was recently shown that the Shannon capacity can be increased if Alice and Bob may use entanglement. Here we partially extend these results to the source-coding problem and to the more general source-channel coding problem. We prove a lower bound on the rate of entanglement-assisted source-codes in terms Szegedy's number (a strengthening of the theta number). This result implies that the theta number lower bounds the entangled variant of the Witsenhausen rate. We also show that entanglement can allow for an unbounded improvement of the asymptotic rate of both classical source codes and classical source-channel codes. Our separation results use low-degree polynomials due to Barrington, Beigel and Rudich, Hadamard matrices due to Xia and Liu and a new application of remote state preparation.Comment: Title has been changed. Previous title was 'Zero-error source-channel coding with entanglement'. Corrected an error in Lemma 1.

    Quantum graphs where back-scattering is prohibited

    Full text link
    We describe a new class of scattering matrices for quantum graphs in which back-scattering is prohibited. We discuss some properties of quantum graphs with these scattering matrices and explain the advantages and interest in their study. We also provide two methods to build the vertex scattering matrices needed for their construction.Comment: 15 page
    • …
    corecore