53,740 research outputs found

    Asymptotic solutions of forced nonlinear second order differential equations and their extensions

    Full text link
    Using a modified version of Schauder's fixed point theorem, measures of non-compactness and classical techniques, we provide new general results on the asymptotic behavior and the non-oscillation of second order scalar nonlinear differential equations on a half-axis. In addition, we extend the methods and present new similar results for integral equations and Volterra-Stieltjes integral equations, a framework whose benefits include the unification of second order difference and differential equations. In so doing, we enlarge the class of nonlinearities and in some cases remove the distinction between superlinear, sublinear, and linear differential equations that is normally found in the literature. An update of papers, past and present, in the theory of Volterra-Stieltjes integral equations is also presented

    Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts

    Get PDF
    Fronts that start from a local perturbation and propagate into a linearly unstable state come in two classes: pulled and pushed. ``Pulled'' fronts are ``pulled along'' by the spreading of linear perturbations about the unstable state, so their asymptotic speed v∗v^* equals the spreading speed of linear perturbations of the unstable state. The central result of this paper is that the velocity of pulled fronts converges universally for time t→∞t\to\infty like v(t)=v∗−3/(2λ∗t)+(3π/2)Dλ∗/(Dλ∗2t)3/2+O(1/t2)v(t)=v^*-3/(2\lambda^*t) + (3\sqrt{\pi}/2) D\lambda^*/(D{\lambda^*}^2t)^{3/2}+O(1/t^2). The parameters v∗v^*, λ∗\lambda^*, and DD are determined through a saddle point analysis from the equation of motion linearized about the unstable invaded state. The interior of the front is essentially slaved to the leading edge, and we derive a simple, explicit and universal expression for its relaxation towards ϕ(x,t)=Φ∗(x−v∗t)\phi(x,t)=\Phi^*(x-v^*t). Our result, which can be viewed as a general center manifold result for pulled front propagation, is derived in detail for the well known nonlinear F-KPP diffusion equation, and extended to much more general (sets of) equations (p.d.e.'s, difference equations, integro-differential equations etc.). Our universal result for pulled fronts thus implies independence (i) of the level curve which is used to track the front position, (ii) of the precise nonlinearities, (iii) of the precise form of the linear operators, and (iv) of the precise initial conditions. Our simulations confirm all our analytical predictions in every detail. A consequence of the slow algebraic relaxation is the breakdown of various perturbative schemes due to the absence of adiabatic decoupling.Comment: 76 pages Latex, 15 figures, submitted to Physica D on March 31, 1999 -- revised version from February 25, 200

    Discrete Analog of the Burgers Equation

    Full text link
    We propose the set of coupled ordinary differential equations dn_j/dt=(n_{j-1})^2-(n_j)^2 as a discrete analog of the classic Burgers equation. We focus on traveling waves and triangular waves, and find that these special solutions of the discrete system capture major features of their continuous counterpart. In particular, the propagation velocity of a traveling wave and the shape of a triangular wave match the continuous behavior. However, there are some subtle differences. For traveling waves, the propagating front can be extremely sharp as it exhibits double exponential decay. For triangular waves, there is an unexpected logarithmic shift in the location of the front. We establish these results using asymptotic analysis, heuristic arguments, and direct numerical integration.Comment: 6 pages, 5 figure

    On the formation of singularities of solutions of nonlinear differential systems in antistokes directions

    Full text link
    We determine the position and the type of spontaneous singularities of solutions of generic analytic nonlinear differential systems in the complex plane, arising along antistokes directions towards irregular singular points of the system. Placing the singularity of the system at infinity we look at equations of the form y′=f(x−1,y)\mathbf{y}'=\mathbf{f}(x^{-1},\mathbf{y}) with f\mathbf{f} analytic in a neighborhood of (0,0)(0,\mathbf{0}), with genericity assumptions; x=∞x=\infty is then a rank one singular point. We analyze the singularities of those solutions y(x)\mathbf{y}(x) which tend to zero for x→∞x\to \infty in some sectorial region, on the edges of the maximal region (also described) with this property. After standard normalization of the differential system, it is shown that singularities occuring in antistokes directions are grouped in nearly periodical arrays of similar singularities as x→∞x\to\infty, the location of the array depending on the solution while the (near-) period and type of singularity are determined by the form of the differential system.Comment: 61
    • …
    corecore