582 research outputs found

    On the k-Abelian Equivalence Relation of Finite Words

    Get PDF
    This thesis is devoted to the so-called k-abelian equivalence relation of sequences of symbols, that is, words. This equivalence relation is a generalization of the abelian equivalence of words. Two words are abelian equivalent if one is a permutation of the other. For any positive integer k, two words are called k-abelian equivalent if each word of length at most k occurs equally many times as a factor in the two words. The k-abelian equivalence defines an equivalence relation, even a congruence, of finite words. A hierarchy of equivalence classes in between the equality relation and the abelian equivalence of words is thus obtained. Most of the literature on the k-abelian equivalence deals with infinite words. In this thesis we consider several aspects of the equivalence relations, the main objective being to build a fairly comprehensive picture on the structure of the k-abelian equivalence classes themselves. The main part of the thesis deals with the structural aspects of k-abelian equivalence classes. We also consider aspects of k-abelian equivalence in infinite words. We survey known characterizations of the k-abelian equivalence of finite words from the literature and also introduce novel characterizations. For the analysis of structural properties of the equivalence relation, the main tool is the characterization by the rewriting rule called the k-switching. Using this rule it is straightforward to show that the language comprised of the lexicographically least elements of the k-abelian equivalence classes is regular. Further word-combinatorial analysis of the lexicographically least elements leads us to describe the deterministic finite automata recognizing this language. Using tools from formal language theory combined with our analysis, we give an optimal expression for the asymptotic growth rate of the number of k-abelian equivalence classes of length n over an m-letter alphabet. Explicit formulae are computed for small values of k and m, and these sequences appear in Sloane’s Online Encyclopedia of Integer Sequences. Due to the fact that the k-abelian equivalence relation is a congruence of the free monoid, we study equations over the k-abelian equivalence classes. The main result in this setting is that any system of equations of k-abelian equivalence classes is equivalent to one of its finite subsystems, i.e., the monoid defined by the k-abelian equivalence relation possesses the compactness property. Concerning infinite words, we mainly consider the (k-)abelian complexity function. We complete a classification of the asymptotic abelian complexities of pure morphic binary words. In other words, given a morphism which has an infinite binary fixed point, the limit superior asymptotic abelian complexity of the fixed point can be computed (in principle). We also give a new proof of the fact that the k-abelian complexity of a Sturmian word is n + 1 for length n 2k. In fact, we consider several aspects of the k-abelian equivalence relation in Sturmian words using a dynamical interpretation of these words. We reprove the fact that any Sturmian word contains arbitrarily large k-abelian repetitions. The methods used allow to analyze the situation in more detail, and this leads us to define the so-called k-abelian critical exponent which measures the ratio of the exponent and the length of the root of a k-abelian repetition. This notion is connected to a deep number theoretic object called the Lagrange spectrum

    Ten Conferences WORDS: Open Problems and Conjectures

    Full text link
    In connection to the development of the field of Combinatorics on Words, we present a list of open problems and conjectures that were stated during the ten last meetings WORDS. We wish to continually update the present document by adding informations concerning advances in problems solving

    Open and closed complexity of infinite words

    Full text link
    In this paper we study the asymptotic behaviour of two relatively new complexity functions defined on infinite words and their relationship to periodicity. Given a factor ww of an infinite word x=x1x2x3x=x_1x_2x_3\cdots with each xix_i belonging to a fixed finite set A,\mathbb{A}, we say ww is closed if either wAw\in \mathbb{A} or if ww is a complete first return to some factor vv of x.x. Otherwise ww is said to be open. We show that for an aperiodic word xAN,x\in \mathbb{A}^\mathbb{N}, the complexity functions ClxCl_x (resp. Opx)Op_x) that count the number of closed (resp. open) factors of xx of each given length are both unbounded. More precisely, we show that if xx is aperiodic then lim infnNOpx(n)=+\liminf_{n\in \mathbb{N}} Op_x(n)=+\infty and lim supnSClx(n)=+\limsup_{n\in S} Cl_x(n)=+\infty for any syndetic subset SS of N.\mathbb{N}. However, there exist aperiodic infinite words xx verifying lim infnNClx(n)<+.\liminf_{n\in \mathbb{N}}Cl_x(n)<+\infty. Keywords: word complexity, periodicity, return words

    On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem

    Full text link
    We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio

    Fixed points of endomorphisms of complex tori

    Full text link
    We study the asymptotic behavior of the cardinality of the fixed point set of iterates of an endomorphism of a complex torus. We show that there are precisely three types of behavior of this function: it is either an exponentially growing function, a periodic function, or a product of both.Comment: Some typos corrected; the introduction was also revise

    Asymptotic Abelian Complexities of Certain Morphic Binary Words

    Get PDF
    We study asymptotic Abelian complexities of morphic binary words. We completethe classification of upper Abelian complexities of pure morphic binary words initiatedrecently by F. Blanchet-Sadri, N. Rampersad, and N. Fox. We also study a class ofmorphic binary words having different asymptotic factor complexities despite havingthe same asymptotic Abelian complexity.</p
    corecore