80 research outputs found

    Combinatorial and Arithmetical Properties of Infinite Words Associated with Non-simple Quadratic Parry Numbers

    Get PDF
    We study arithmetical and combinatorial properties of β\beta-integers for β\beta being the root of the equation x2=mx−n,m,n∈N,m≥n+2≥3x^2=mx-n, m,n \in \mathbb N, m \geq n+2\geq 3. We determine with the accuracy of ±1\pm 1 the maximal number of β\beta-fractional positions, which may arise as a result of addition of two β\beta-integers. For the infinite word uβu_\beta coding distances between consecutive β\beta-integers, we determine precisely also the balance. The word uβu_\beta is the fixed point of the morphism A→Am−1BA \to A^{m-1}B and B→Am−n−1BB\to A^{m-n-1}B. In the case n=1n=1 the corresponding infinite word uβu_\beta is sturmian and therefore 1-balanced. On the simplest non-sturmian example with n≥2n\geq 2, we illustrate how closely the balance and arithmetical properties of β\beta-integers are related.Comment: 15 page

    Words with the Maximum Number of Abelian Squares

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain Θ(n2)\Theta(n^2) distinct factors that are abelian squares. We study infinite words such that the number of abelian square factors of length nn grows quadratically with nn.Comment: To appear in the proceedings of WORDS 201

    Repetitions in beta-integers

    Full text link
    Classical crystals are solid materials containing arbitrarily long periodic repetitions of a single motif. In this paper, we study the maximal possible repetition of the same motif occurring in beta-integers -- one dimensional models of quasicrystals. We are interested in beta-integers realizing only a finite number of distinct distances between neighboring elements. In such a case, the problem may be reformulated in terms of combinatorics on words as a study of the index of infinite words coding beta-integers. We will solve a particular case for beta being a quadratic non-simple Parry number.Comment: 11 page

    Abelian-Square-Rich Words

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain at most Θ(n2)\Theta(n^2) distinct factors, and there exist words of length nn containing Θ(n2)\Theta(n^2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length nn grows quadratically with nn. More precisely, we say that an infinite word ww is {\it abelian-square-rich} if, for every nn, every factor of ww of length nn contains, on average, a number of distinct abelian-square factors that is quadratic in nn; and {\it uniformly abelian-square-rich} if every factor of ww contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n2n of the Thue-Morse word is 22-regular. As for Sturmian words, we prove that a Sturmian word sαs_{\alpha} of angle α\alpha is uniformly abelian-square-rich if and only if the irrational α\alpha has bounded partial quotients, that is, if and only if sαs_{\alpha} has bounded exponent.Comment: To appear in Theoretical Computer Science. Corrected a flaw in the proof of Proposition

    The number of binary rotation words

    Get PDF
    We consider binary rotation words generated by partitions of the unit circle to two intervals and give a precise formula for the number of such words of length n. We also give the precise asymptotics for it, which happens to be O(n^4). The result continues the line initiated by the formula for the number of all Sturmian words obtained by Lipatov in 1982, then independently by Berenstein, Kanal, Lavine and Olson in 1987, Mignosi in 1991, and then with another technique by Berstel and Pocchiola in 1993.Comment: Submitted to RAIRO IT

    Integers in number systems with positive and negative quadratic Pisot base

    Full text link
    We consider numeration systems with base β\beta and −β-\beta, for quadratic Pisot numbers β\beta and focus on comparing the combinatorial structure of the sets Zβ\Z_\beta and Z−β\Z_{-\beta} of numbers with integer expansion in base β\beta, resp. −β-\beta. Our main result is the comparison of languages of infinite words uβu_\beta and u−βu_{-\beta} coding the ordering of distances between consecutive β\beta- and (−β)(-\beta)-integers. It turns out that for a class of roots β\beta of x2−mx−mx^2-mx-m, the languages coincide, while for other quadratic Pisot numbers the language of uβu_\beta can be identified only with the language of a morphic image of u−βu_{-\beta}. We also study the group structure of (−β)(-\beta)-integers.Comment: 19 pages, 5 figure

    Extremal properties of (epi)Sturmian sequences and distribution modulo 1

    Get PDF
    Starting from a study of Y. Bugeaud and A. Dubickas (2005) on a question in distribution of real numbers modulo 1 via combinatorics on words, we survey some combinatorial properties of (epi)Sturmian sequences and distribution modulo 1 in connection to their work. In particular we focus on extremal properties of (epi)Sturmian sequences, some of which have been rediscovered several times

    Nested quasicrystalline discretisations of the line

    Get PDF
    One-dimensional cut-and-project point sets obtained from the square lattice in the plane are considered from a unifying point of view and in the perspective of aperiodic wavelet constructions. We successively examine their geometrical aspects, combinatorial properties from the point of view of the theory of languages, and self-similarity with algebraic scaling factor θ\theta. We explain the relation of the cut-and-project sets to non-standard numeration systems based on θ\theta. We finally examine the substitutivity, a weakened version of substitution invariance, which provides us with an algorithm for symbolic generation of cut-and-project sequences
    • …
    corecore