23,001 research outputs found

    Modular embeddings of Teichmueller curves

    Full text link
    Fuchsian groups with a modular embedding have the richest arithmetic properties among non-arithmetic Fuchsian groups. But they are very rare, all known examples being related either to triangle groups or to Teichmueller curves. In Part I of this paper we study the arithmetic properties of the modular embedding and develop from scratch a theory of twisted modular forms for Fuchsian groups with a modular embedding, proving dimension formulas, coefficient growth estimates and differential equations. In Part II we provide a modular proof for an Apery-like integrality statement for solutions of Picard-Fuchs equations. We illustrate the theory on a worked example, giving explicit Fourier expansions of twisted modular forms and the equation of a Teichmueller curve in a Hilbert modular surface. In Part III we show that genus two Teichmueller curves are cut out in Hilbert modular surfaces by a product of theta derivatives. We rederive most of the known properties of those Teichmueller curves from this viewpoint, without using the theory of flat surfaces. As a consequence we give the modular embeddings for all genus two Teichmueller curves and prove that the Fourier developments of their twisted modular forms are algebraic up to one transcendental scaling constant. Moreover, we prove that Bainbridge's compactification of Hilbert modular surfaces is toroidal. The strategy to compactify can be expressed using continued fractions and resembles Hirzebruch's in form, but every detail is different.Comment: revision including the referee's comments, to appear in Compositio Mat

    Zeta functions of regular arithmetic schemes at s=0

    Full text link
    Lichtenbaum conjectured the existence of a Weil-\'etale cohomology in order to describe the vanishing order and the special value of the Zeta function of an arithmetic scheme X\mathcal{X} at s=0s=0 in terms of Euler-Poincar\'e characteristics. Assuming the (conjectured) finite generation of some \'etale motivic cohomology groups we construct such a cohomology theory for regular schemes proper over Spec(Z)\mathrm{Spec}(\mathbb{Z}). In particular, we obtain (unconditionally) the right Weil-\'etale cohomology for geometrically cellular schemes over number rings. We state a conjecture expressing the vanishing order and the special value up to sign of the Zeta function ζ(X,s)\zeta(\mathcal{X},s) at s=0s=0 in terms of a perfect complex of abelian groups RΓW,c(X,Z)R\Gamma_{W,c}(\mathcal{X},\mathbb{Z}). Then we relate this conjecture to Soul\'e's conjecture and to the Tamagawa number conjecture of Bloch-Kato, and deduce its validity in simple cases.Comment: 53 pages. To appear in Duke Math.

    Three-term arithmetic progressions and sumsets

    Full text link
    Suppose that G is an abelian group and A is a finite subset of G containing no three-term arithmetic progressions. We show that |A+A| >> |A|(log |A|)^{1/3-\epsilon} for all \epsilon>0.Comment: 20 pp. Corrected typos. Updated references. Corrected proof of Theorem 5.1. Minor revisions

    Multiplicities of Periodic Orbit Lengths for Non-Arithmetic Models

    Full text link
    Multiplicities of periodic orbit lengths for non-arithmetic Hecke triangle groups are discussed. It is demonstrated both numerically and analytically that at least for certain groups the mean multiplicity of periodic orbits with exactly the same length increases exponentially with the length. The main ingredient used is the construction of joint distribution of periodic orbits when group matrices are transformed by field isomorphisms. The method can be generalized to other groups for which traces of group matrices are integers of an algebraic field of finite degree
    • …
    corecore