970 research outputs found

    Development of step-compliant system for turn-mill operations

    Get PDF
    Today with the latest technology the information beyond tool movement and switching instruction such as tooling, manufacturing features and process sequences are needed to support global adaptability for manufacturing with a specific focus on CNC-based manufacture. This research focuses on the use of the new standard; ISO 14649 (STEP-NC), to address the process planning and machining of discrete turn/mill components and proposes a STEP Compliant NC structure for generation of ISO 14646 code which can be used for turning component manufacture. The novel application of this work is STEP-NC compliant process control where the research will utilise and extend the standard for in process measurement at the machine and also explore the application and integration of the STEP-NC standards. The major contribution of this research is the review of a computational environment for a STEPNC compliant system for turn/mill operations by focusing the outlines of the three major CAD/CAM frameworks to support the implementation of the standard with various levels of STEP compliant architecture. Issues related to the implementation of these frameworks and their use with STEP compliant NC controllers provide a major change in the current day use of CAD, CAPP, CAM and CNC systems. This change will bring new challenges to industrial users and software vendors to identify the new boundaries and define intelligent CNC manufacture in the 21st century

    Toolpaths Programming in an Intelligent Step-NC Manufacturing Context

    Get PDF
    The current language for CNC programming is G-code which dates from the beginning of the eighties with the norm ISO 6983. With the new technologies, G-code becomes obsolete. It presents drawbacks that create a rupture in the numerical chain at the manufacturing step. A new standard, STEP-NC, aims to overtake these lacks. A STEP-NC file includes all the information for manufacturing, as geometry description of the entities, workplan, machining strategies, tools, etc. For rough pocket milling, the ISO norms propose different kind of classical strategies as bidirectional, parallel or spiral contour, etc. This paper describes a new way of toolpath programming by the repetition of a pattern all along a guide curve. It presents several advantages as building fastness and easiness. The integration of pattern strategies in STEP-NC standard is an other step for the development of these strategies but also for the enrichment of STEP-NC possibilities. A complete STEP-NC numerical chain was built, integrating these pattern strategies. The implementation of this approach of building pattern strategies was made by the development of tools for the complete manufacturing cycle, from the CAD file to the machined part. Several application cases were experimented on machine tool to validate this approach and the efficiency of the developped tools

    A REVIEW OF INTELLIGENT CNC CONTROLLER DEVELOPMENT BASED ON STEP-NC

    Get PDF
    In the contemporary Computer Numeric Controlled (CNC) machine tools of Computer Aided Manufacturing (CAM) and CNC process conducted by a number of inter-related operations and parameters using G Codes and M codes set as RS274 or ISO 6983 standard. However, this programming language does not explicitly relate to each other to have control of arbitrary locations other than the motion of the block-by-block. STEP-NC is the extension to STEP, Standard for Exchange Product model data. This determines the neutral data format for digital information from a product. STEP-NC standard is on how information about CNC machining can be added to parts represented in the STEP product model data. In this paper is to review and explore the making of interoperable CNC manufacturing is then provided relating milling, turning, turn-mill through the development of information models for products, processes and new machining system controller developed base on new standard ISO 14649 standard and ISO 10303, which related to data modeling for CNC features, process planning, and machine tool. It is expected that this paper will meet a step towards the requirements for global interoperable manufacturing for real-life machining system

    STEP-NC-compliant implementation to support mixed-control technologies applied to stone-processing machines based on industrial automation standards

    Get PDF
    STEP-NC (Standard for the Exchange of Product Model Data–Numerical Control) for metal milling and turning is not implemented by industrial computer numerical controllers. Solutions reported are prototypes based on post-processing in G-code. Moreover, minority machining processes, such as stone cutting, have not yet been contemplated in the STEP-NC standard. This article takes that sector as a use case. An extended STEP-NC model for circular saw stone-cutting operations is proposed, and a prototype automation implementation is developed to work with this extended model. This article shows how modern technological resources for coordinated axes control provided by many industrial controllers for the automation of general-purpose machines can speed up the processes of implementing STEP-NC numerical controllers. This article proposes a mixed and flexible approach for STEP-NC-based machine automation, where different strategies can coexist when it comes to executing STEP-NC machining files, so controllers do not need to implement the standard in an exhaustive way for all the possible features, but only at selected ones when convenient. This is demonstrated in a prototype implementation which is able to process STEP-NC product files with mixed-feature types: standard milling and non-standard sawblade features for stone processing

    Design of a STEP compliant system for turning operations

    Get PDF
    The changing economic climate has made global manufacturing a growing necessity over the last decade, forcing companies from East and West to collaborate beyond geographic boundaries in the design, manufacture and assembly of products. The ISO 10303 and ISO 14649 Standards (STEP and STEP-NC) have been developed to introduce interoperability into manufacturing enterprises so as to meet the challenges of responding to production on demand. This paper describes and illustrates a STEP compliant CAD/CAPP/CAM System for the manufacture of rotational parts on CNC turning centers. The information models to support the proposed system together with the data models defined in the ISO 14649 standard used to create the NC programs are also described. A structured view of a STEP compliant CAD/CAPP/CAM system framework supporting the next generation of intelligent CNC controllers for turn/mill component manufacture is provided. Finally a proposed computational environment for a STEP-NC compliant system for turning operations (SCSTO) is described. SCSTO is the experimental aspect of the research and is supported by information models that and have been constructed using a structured methodology and object-oriented methods. SCSTO was developed to generate a Part 21 file based on machining features to support the interactive generation of process plans utilizing feature extraction. A case study component has been developed to prove the concept of using the milling and turning parts of ISO 14649 to provide a turn-mill CAD/CAPP/CAM environment
    • …
    corecore